
Swift 4

Swift 4

i

About the Tutorial

Swift 4 is a new programming language developed by Apple Inc for iOS and OS X

development. Swift 4 adopts the best of C and Objective-C, without the constraints of C

compatibility.

Swift 4 uses the same runtime as the existing Obj-C system on Mac OS and iOS, which

enables Swift 4 programs to run on many existing iOS 6 and OS X 10.8 platforms.

Audience
This tutorial is designed for software programmers who would like to learn the basics of

Swift 4 programming language from scratch. This tutorial will give you enough

understanding on Swift 4 programming language from where you can take yourself to
higher levels of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of Computer
Programming terminologies and exposure to any programming language.

Execute Swift 4 Online

For most of the examples given in this tutorial, you will find a Try it option, so just use
this option to execute your Swift 4 programs on the spot and enjoy your learning.

Try the following example using Try it option available at the top right corner of the
following sample code box:

import Cocoa

/* My first program in Swift 4 */

var myString = "Hello, World!"

print(myString)

Disclaimer & Copyright

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Swift 4

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Execute Swift 4 Online ... i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. SWIFT 4 – OVERVIEW .. 1

2. SWIFT 4 – ENVIRONMENT ... 2

Try it Option Online ... 2

Local Environment Setup... 2

3. SWIFT 4 – BASIC SYNTAX ... 6

Import in Swift 4 ... 6

Tokens in Swift 4 ... 6

Comments ... 7

Semicolons .. 7

Identifiers .. 7

Keywords .. 8

Whitespaces .. 9

Literals .. 9

Printing in Swift ... 9

4. SWIFT 4 – DATA TYPES .. 11

Built-in Data Types .. 11

Bound Values .. 12

Type Aliases .. 12

Swift 4

iii

Type Safety ... 13

Type Inference .. 13

5. SWIFT 4 – VARIABLES .. 15

Variable Declaration.. 15

Type Annotations .. 16

Naming Variables .. 16

Printing Variables .. 17

6. SWIFT 4 – OPTIONALS ... 18

Forced Unwrapping ... 18

Automatic Unwrapping ... 19

Optional Binding ... 20

7. SWIFT 4 – TUPLES .. 21

8. SWIFT 4 – CONSTANTS .. 22

Constants Declaration ... 22

Type Annotations .. 22

Naming Constants ... 23

Printing Constants ... 23

9. SWIFT 4 – LITERALS ... 24

Integer Literals .. 24

Floating-point Literals ... 24

String Literals .. 24

Boolean Literals... 25

10. SWIFT 4 – OPERATORS .. 26

Arithmetic Operators .. 26

Comparison Operators .. 27

Swift 4

iv

Logical Operators .. 27

Bitwise Operators ... 28

Assignment Operators... 29

Range Operators ... 30

Misc Operators .. 31

Operators Precedence ... 31

11. SWIFT 4 – DECISION MAKING .. 33

if Statement .. 34

if-else Statement ... 35

if...else if...else Statement ... 36

Nested If Statements ... 38

Switch Statement .. 39

The ? : Operator .. 41

12. SWIFT 4 – LOOPS ... 42

for-in Loop .. 43

Swift 4 – while Loop .. 44

Swift 4 – repeat-while Loop .. 45

Loop Control Statements... 47

Swift 4 – continue Statement .. 47

Swift 4 – break Statement ... 49

Swift 4 – Fallthrough Statement .. 50

13. SWIFT 4 – STRINGS .. 53

Create a String ... 53

Empty String .. 53

String Constants .. 54

String Interpolation ... 55

Swift 4

v

String Concatenation ... 55

String Length ... 56

String Comparison ... 56

String Iterating .. 56

Unicode Strings ... 57

String Functions & Operators .. 57

14. SWIFT 4 – CHARACTERS ... 60

Empty Character Variables .. 60

Accessing Characters from Strings ... 61

Concatenating Strings with Characters .. 61

15. SWIFT 4 – ARRAYS ... 62

Creating Arrays ... 62

Accessing Arrays.. 62

Modifying Arrays ... 63

Iterating Over an Array ... 64

Adding Two Arrays .. 65

The count Property ... 66

The empty Property .. 66

16. SWIFT 4 – SETS .. 68

Creating Sets ... 68

Accessing and modifying Sets .. 68

Iterating over a Set .. 69

Performing Set Operations .. 69

17. SWIFT 4 – DICTIONARIES ... 70

Creating Dictionary ... 70

Swift 4

vi

Sequence Based Initialization .. 70

Filtering ... 71

Dictionary Grouping .. 71

Accessing Dictionaries ... 71

Modifying Dictionaries .. 72

Remove Key-Value Pairs .. 73

Iterating Over a Dictionary .. 74

Convert to Arrays .. 75

The count Property ... 76

The empty Property .. 76

18. SWIFT 4 – FUNCTIONS ... 77

Function Definition ... 77

Calling a Function .. 78

Parameters and Return Values .. 78

Functions without Parameters .. 79

Functions with Return Values .. 79

Functions without Return Values .. 80

Functions with Optional Return Types .. 80

Functions Local Vs External Parameter Names .. 81

External Parameter Names ... 82

Variadic Parameters .. 82

Constant, Variable, and I/O Parameters .. 83

Function Types & its Usage ... 84

Using Function Types .. 85

Function Types as Parameter Types & Return Types ... 85

Nested Functions .. 86

Swift 4

vii

19. SWIFT 4 – CLOSURES ... 87

Expressions in Closures ... 88

Single Expression Implicit Returns ... 89

Known Type Closures .. 90

Declaring Shorthand Argument Names as Closures ... 90

Closures as Operator Functions ... 91

Closures as Trailers .. 91

Capturing Values and Reference Types ... 92

20. SWIFT 4 – ENUMERATIONS ... 94

Enumeration Functionality .. 94

Enumeration with Switch Statement ... 95

Difference between Associated Values and Raw Values.. 96

Enum with Associated Values .. 96

Enum with Raw Values .. 97

21. SWIFT 4 – STRUCTURES ... 98

Definition of a Structure .. 98

Accessing the Structure and its Properties .. 98

Best Usage Practices of Structures .. 100

22. SWIFT 4 – CLASSES .. 102

Class Identity Operators .. 104

23. SWIFT 4 – PROPERTIES .. 106

Stored Properties .. 106

Lazy Stored Property ... 107

Instance Variables ... 108

Computed Properties .. 108

Swift 4

viii

Local and Global Variables .. 111

Type Properties ... 111

Querying and Setting Properties ... 112

24. SWIFT 4 – METHODS ... 113

Instance Methods ... 113

Local and External Parameter Names .. 114

External Parameter Name with # and _ Symbol .. 115

Self property in Methods .. 116

Modifying Value Types from Instance Methods .. 117

Self Property for Mutating Method ... 118

Type Methods ... 118

25. SWIFT 4 – SUBSCRIPTS... 120

Subscript Declaration Syntax and its Usage ... 120

Options in Subscript .. 122

26. SWIFT 4 – INHERITANCE .. 124

Base Class .. 124

Subclass .. 125

Overriding ... 126

Methods Overriding .. 126

Property Overriding .. 127

Overriding Property Observers .. 128

Final Property to prevent Overriding ... 129

27. SWIFT 4 – INITIALIZATION ... 131

Initializer Role for Stored Properties ... 131

Setting Property Values by Default ... 132

Swift 4

ix

Parameters Initialization ... 132

Local & External Parameters ... 133

Parameters without External Names ... 134

Optional Property Types ... 135

Modifying Constant Properties During Initialization .. 136

Default Initializers ... 137

Memberwise Initializers for Structure Types ... 138

Initializer Delegation for Value Types .. 138

Class Inheritance and Initialization .. 140

Initializer Inheritance and Overriding .. 142

Failable Initializer .. 143

Failable Initializers for Enumerations .. 144

Failable Initializers for Classes ... 145

Overriding a Failable Initializer .. 146

The init! Failable Initializer .. 147

Required Initializers .. 148

28. SWIFT 4 – DEINITIALIZATION ... 149

Deinitialization to Deallocate Memory Space .. 149

29. SWIFT 4 – ARC OVERVIEW ... 151

Functions of ARC ... 151

ARC Program ... 151

ARC Strong Reference Cycles Class Instances .. 152

ARC Weak and Unowned References .. 153

Strong Reference Cycles for Closures .. 155

Weak and Unowned References ... 156

Swift 4

x

30. SWIFT 4 – OPTIONAL CHAINING .. 158

Optional Chaining as an Alternative to Forced Unwrapping .. 158

Defining Model Classes for Optional Chaining & Accessing Properties .. 160

Calling Methods Through Optional Chaining ... 162

Accessing Subscripts through Optional Chaining ... 163

Accessing Subscripts of Optional Type .. 167

Linking Multiple Levels of Chaining ... 169

Chaining on Methods with Optional Return Values ... 173

31. SWIFT 4 – TYPE CASTING ... 175

Defining a Class Hierarchy ... 175

Type Checking ... 176

Downcasting ... 178

Typecasting:Any and Any Object ... 180

AnyObject ... 182

32. SWIFT 4 – EXTENSIONS .. 185

Computed Properties .. 185

Initializers ... 186

Methods .. 188

Mutating Instance Methods .. 188

Subscripts .. 189

Nested Types ... 190

33. SWIFT 4 – PROTOCOLS .. 192

Property and Method Requirements ... 192

Mutating Method Requirements ... 194

Initializer Requirements .. 195

Swift 4

xi

Class Implementations of Protocol Initializer Requirements ... 196

Protocols as Types ... 197

Adding Protocol Conformance with an Extension.. 198

Protocol Inheritance .. 199

Class Only Protocols .. 201

Protocol Composition .. 202

Checking for Protocol Conformance .. 203

34. SWIFT 4 – GENERICS .. 205

Generic Functions: Type Parameters ... 205

Extending a Generic Type .. 207

Type Constraints ... 208

Associated Types ... 209

Where Clauses .. 211

35. SWIFT 4 – ACCESS CONTROL ... 213

Access Control for Function types ... 213

Access Control for Enumeration types ... 214

Access Control for SubClasses ... 215

Access Control for Constants, variables, properties and subscripts ... 215

Getters and Setters ... 216

Access Control for Initializers and Default Initializers .. 216

Access Control for Protocols .. 217

Access Control for Extensions .. 218

Access Control for Generics ... 218

Access Control for Type Aliases ... 219

Swift Encoding and Decoding .. 222

Swift 4

1

Swift 4 is a new programming language developed by Apple Inc for iOS and OS X

development. Swift 4 adopts the best of C and Objective-C, without the constraints of

C compatibility.

 Swift 4 makes use of safe programming patterns.

 Swift 4 provides modern programming features.

 Swift 4 provides Objective-C like syntax.

 Swift 4 is a fantastic way to write iOS and OS X apps.

 Swift 4 provides seamless access to existing Cocoa frameworks.

 Swift 4 unifies the procedural and object-oriented portions of the language.

 Swift 4 does not need a separate library import to support functionalities like
input/output or string handling.

Swift 4 uses the same runtime as the existing Obj-C system on Mac OS and iOS, which
enables Swift 4 programs to run on many existing iOS 6 and OS X 10.8 platforms.

Swift 4 comes with playground feature where Swift 4 programmers can write their code

and execute it to see the results immediately.

The first public release of Swift was released in 2010. It took Chris Lattner almost 14

years to come up with the first official version, and later, it was supported by many other
contributors. Swift 4 has been included in Xcode 6 beta.

Swift designers took ideas from various other popular languages such as Objective-C,
Rust, Haskell, Ruby, Python, C#, and CLU.

1. Swift 4 – Overview

Swift 4

2

Try it Option Online

You really do not need to set up your own environment to start learning Swift 4

programming. Reason is very simple, we already have set up Swift 4 environment online,

so that you can execute all the available examples online at the same time when you are

doing your theory work. This gives you the confidence in what you are reading and in

addition to that, you can verify the result with different options. Feel free to modify any

example and execute it online.

Try the following example using the Try it option available at the top right corner of the

following sample code box:

import Cocoa

/* My first program in Swift 4 */

var myString = "Hello, World!"

print(myString)

For most of the examples given in this tutorial, you will find a Try it option, so just make

use of it and enjoy your learning.

Local Environment Setup

Swift 4 provides a Playground platform for learning purpose and we are going to setup the

same. You need xCode software to start your Swift 4 coding in Playground. Once you are

comfortable with the concepts of Swift 4, you can use xCode IDE for iSO/OS x application
development.

To start with, we consider you already have an account at Apple Developer website. Once
you are logged in, go to the following link:

Download for Apple Developers

2. Swift 4 – Environment

https://developer.apple.com/downloads/index.action

Swift 4

3

This will list down a number of software available as follows:

Now select xCode and download it by clicking on the given link near to disc image. After

downloading the dmg file, you can install it by simply double-clicking on it and following

the given instructions. Finally, follow the given instructions and drop xCode icon into the
Application folder.

Now you have xCode installed on your machine. Next, open Xcode from the Application

folder and proceed after accepting the terms and conditions. If everything is fine, you will
get the following screen:

Swift 4

4

Select Get started with a playground option and enter a name for playground and
select iOS as platform. Finally, you will get the Playground window as follows:

Following is the code taken from the default Swift 4 Playground Window.

import UIKit

var str = "Hello, playground"

If you create the same program for OS X program, then it will include import Cocoa and
the program will look like as follows:

import Cocoa

var str = "Hello, playground"

Swift 4

5

When the above program gets loaded, it should display the following result in Playground
result area (Right Hand Side).

Hello, playground

Congratulations, you have your Swift 4 programming environment ready and you can
proceed with your learning vehicle "Tutorials Point".

Swift 4

6

We have already seen a piece of Swift 4 program while setting up the environment. Let's

start once again with the following Hello, World! program created for OS X playground,

which includes import Cocoa as shown below:

import Cocoa

/* My first program in Swift 4 */

var myString = "Hello, World!"

print(myString)

If you create the same program for iOS playground, then it will include import UIKit and

the program will look as follows:

import UIKit

var myString = "Hello, World!"

print(myString)

When we run the above program using an appropriate playground, we will get the following
result.

Hello, World!

Let us now see the basic structure of a Swift 4 program, so that it will be easy for you to
understand the basic building blocks of the Swift 4 programming language.

Import in Swift 4

You can use the import statement to import any Objective-C framework (or C library)

directly into your Swift 4 program. For example, the above import cocoa statement

makes all Cocoa libraries, APIs, and runtimes that form the development layer for all of
OS X, available in Swift 4.

Cocoa is implemented in Objective-C, which is a superset of C, so it is easy to mix C and
even C++ into your Swift 4 applications.

Tokens in Swift 4

A Swift 4 program consists of various tokens and a token is either a keyword, an identifier,

a constant, a string literal, or a symbol. For example, the following Swift 4 statement
consists of three tokens:

print("test!")

The individual tokens are:

3. Swift 4 – Basic Syntax

Swift 4

7

print

(

 "test!"

)

Comments

Comments are like helping texts in your Swift 4 program. They are ignored by the

compiler. Multi-line comments start with /* and terminate with the characters */ as shown

below:

/* My first program in Swift 4 */

Multi-line comments can be nested in Swift 4. Following is a valid comment in Swift 4:

/* My first program in Swift 4 is Hello, World!

/* Where as second program is Hello, Swift 4! */ */

Single-line comments are written using // at the beginning of the comment.

// My first program in Swift 4

Semicolons

Swift 4 does not require you to type a semicolon (;) after each statement in your code,

though it’s optional; and if you use a semicolon, then the compiler does not complain
about it.

However, if you are using multiple statements in the same line, then it is required to use

a semicolon as a delimiter, otherwise the compiler will raise a syntax error. You can write
the above Hello, World! program as follows:

import Cocoa

/* My first program in Swift 4 */

var myString = "Hello, World!"; print(myString)

Identifiers

A Swift 4 identifier is a name used to identify a variable, function, or any other user-

defined item. An identifier starts with an alphabet A to Z or a to z or an underscore _
followed by zero or more letters, underscores, and digits (0 to 9).

Swift 4 does not allow special characters such as @, $, and % within identifiers. Swift 4 is

a case sensitive programming language. Thus, Manpower and manpower are two
different identifiers in Swift 4. Here are some examples of acceptable identifiers:

Azad zara abc move_name a_123

Swift 4

8

myname50 _temp j a23b9 retVal

To use a reserved word as an identifier, you will need to put a backtick (`) before and

after it. For example, class is not a valid identifier, but `class` is valid.

Keywords

The following keywords are reserved in Swift 4. These reserved words may not be used as

constants or variables or any other identifier names, unless they're escaped with

backticks:

Keywords used in declarations

Class deinit Enum extension

Func import Init internal

Let operator private protocol

public static struct subscript

typealias var

Keywords used in statements

break case continue default

do else fallthrough for

if in return switch

where while

Keywords used in expressions and types

as dynamicType false is

nil self Self super

true _COLUMN_ _FILE_ _FUNCTION_

LINE

Keywords used in particular contexts

associativity convenience dynamic didSet

final get infix inout

lazy left mutating none

nonmutating optional override postfix

precedence prefix Protocol required

Swift 4

9

right set Type unowned

weak willSet

Whitespaces

A line containing only whitespace, possibly with a comment, is known as a blank line, and
a Swift 4 compiler totally ignores it.

Whitespace is the term used in Swift 4 to describe blanks, tabs, newline characters, and

comments. Whitespaces separate one part of a statement from another and enable the

compiler to identify where one element in a statement, such as int, ends and the next
element begins. Therefore, in the following statement:

var age

there must be at least one whitespace character (usually a space) between var

and age for the compiler to be able to distinguish them. On the other hand, in the following
statement:

int fruit = apples + oranges //get the total fruits

no whitespace characters are necessary between fruit and =, or between = and apples,
although you are free to include some for better readability.

Space on both side of a operator should be equal, for eg.

int fruit= apples +oranges //is a wrong statement

int fruit = apples + oranges //is a Correct statement

Literals

A literal is the source code representation of a value of an integer, floating-point number,
or string type. The following are examples of literals:

92 // Integer literal

4.24159 // Floating-point literal

"Hello, World!" // String literal

Printing in Swift

To print anything in swift we have ‘ print ‘ keyword.

print has three different properties.

Items – Items to be printed

Separator – separator between items

Terminator – the value with which line should end, let’s see a example and syntax of same.

Swift 4

10

print(“Items to print”, separator: “Value ” , Terminator: “Value”)

// E.g. of print statement.

print(“Value one”)

// prints “Value one \n” Adds, \n as terminator and “ ” as separator by
default.

print(“Value one”,”Value two”, separator: “ Next Value” , terminator: “ End”)

//prints “Value one Next Value Value two End”

In the above code first print statement adds \n , newline Feed as terminator by default,

where as in second print statement we’ve given “ End ” as terminator, hence it’ll print “End

” instead of \n.

We can give our custom separator and terminators according to our requirement.

Swift 4

11

While doing programming in any programming language, you need to use different types

of variables to store information. Variables are nothing but reserved memory locations to

store values. This means that when you create a variable, you reserve some space in
memory.

You may like to store information of various data types like string, character, wide

character, integer, floating point, Boolean, etc. Based on the data type of a variable, the

operating system allocates memory and decides what can be stored in the reserved

memory.

Built-in Data Types

Swift 4 offers the programmer a rich assortment of built-in as well as user-defined data

types. The following types of basic data types are most frequently when declaring
variables:

 Int or UInt – This is used for whole numbers. More specifically, you can use Int32,

Int64 to define 32 or 64 bit signed integer, whereas UInt32 or UInt64 to define 32

or 64 bit unsigned integer variables. For example, 42 and -23.

 Float – This is used to represent a 32-bit floating-point number and numbers with

smaller decimal points. For example, 3.14159, 0.1, and -273.158.

 Double – This is used to represent a 64-bit floating-point number and used when

floating-point values must be very large. For example, 3.14159, 0.1, and -273.158.

 Bool – This represents a Boolean value which is either true or false.

 String – This is an ordered collection of characters. For example, "Hello, World!"

 Character – This is a single-character string literal. For example, "C"

 Optional – This represents a variable that can hold either a value or no value.

 Tuples – This is used to group multiple values in single Compound Value.

We have listed here a few important points related to Integer types:

 On a 32-bit platform, Int is the same size as Int32.

 On a 64-bit platform, Int is the same size as Int64.

 On a 32-bit platform, UInt is the same size as UInt32.

 On a 64-bit platform, UInt is the same size as UInt64.

4. Swift 4 – Data Types

Swift 4

12

 Int8, Int16, Int32, Int64 can be used to represent 8 Bit, 16 Bit, 32 Bit, and 64 Bit

forms of signed integer.

 UInt8, UInt16, UInt32, and UInt64 can be used to represent 8 Bit, 16 Bit, 32 Bit
and 64 Bit forms of unsigned integer.

Bound Values

The following table shows the variable type, how much memory it takes to store the value

in memory, and what is the maximum and minimum value which can be stored in such
type of variables.

Type Typical Bit Width Typical Range

Int8 1byte -127 to 127

UInt8 1byte 0 to 255

Int32 4bytes -2147483648 to 2147483647

UInt32 4bytes 0 to 4294967295

Int64 8bytes -9223372036854775808 to 9223372036854775807

UInt64 8bytes 0 to 18446744073709551615

Float 4bytes 1.2E-38 to 3.4E+38 (~6 digits)

Double 8bytes 2.3E-308 to 1.7E+308 (~15 digits)

Type Aliases

You can create a new name for an existing type using typealias. Here is the simple syntax
to define a new type using typealias:

typealias newname = type

For example, the following line instructs the compiler that Feet is another name for Int:

typealias Feet = Int

Now, the following declaration is perfectly legal and creates an integer variable called
distance:

import Cocoa

typealias Feet = Int

var distance: Feet = 100

print(distance)

When we run the above program using playground, we get the following result.

Swift 4

13

100

Type Safety

Swift 4 is a type-safe language which means if a part of your code expects a String, you

can't pass it an Int by mistake.

As Swift 4 is type-safe, it performs type-checks when compiling your code and flags any
mismatched types as errors.

import Cocoa

var varA = 42

varA = "This is hello"

print(varA)

When we compile the above program, it produces the following compile time error.

Playground execution failed: error: :6:6: error: cannot assign to 'let' value
'varA'

varA = "This is hello"

Type Inference

Type inference enables a compiler to deduce the type of a particular expression

automatically when it compiles your code, simply by examining the values you provide.

Swift 4 uses type inference to work out the appropriate type as follows.

import Cocoa

// varA is inferred to be of type Int

var varA = 42

print(varA)

// varB is inferred to be of type Double

var varB = 3.14159

print(varB)

// varC is also inferred to be of type Double

var varC = 3 + 0.14159

print(varC)

When we run the above program using playground, we get the following result:

Swift 4

14

42

3.14159

3.14159

Swift 4

15

A variable provides us with named storage that our programs can manipulate. Each

variable in Swift 4 has a specific type, which determines the size and layout of the

variable's memory; the range of values that can be stored within that memory; and the
set of operations that can be applied to the variable.

Swift 4 supports the following basic types of variables:

 Int or UInt – This is used for whole numbers. More specifically, you can use

Int32, Int64 to define 32 or 64 bit signed integer, whereas UInt32 or UInt64 to

define 32 or 64 bit unsigned integer variables. For example, 42 and -23.

 Float – This is used to represent a 32-bit floating-point number. It is used to hold

numbers with smaller decimal points. For example, 3.14159, 0.1, and -273.158.

 Double – This is used to represent a 64-bit floating-point number and used when

floating-point values must be very large. For example 3.14159, 0.1, and -273.158.

 Bool – This represents a Boolean value which is either true or false.

 String – This is an ordered collection of characters. For example, "Hello, World!"

 Character – This is a single-character string literal. For example, "C"

Swift 4 also allows to define various other types of variables, which we will cover in

subsequent chapters, such as Optional, Array, Dictionaries, Structures, and Classes.

The following section will cover how to declare and use various types of variables in Swift
4 programming.

Variable Declaration

A variable declaration tells the compiler where and how much to create the storage for the

variable. Before you use variables, you must declare them using var keyword as follows:

var variableName = <initial value>

The following example shows how to declare a variable in Swift 4:

import Cocoa

var varA = 42

print(varA)

When we run the above program using playground, we get the following result:

42

5. Swift 4 – Variables

Swift 4

16

Type Annotations

You can provide a type annotation when you declare a variable, to be clear about the

kind of values the variable can store. Here is the syntax:

var variableName:<data type> = <optional initial value>

The following example shows how to declare a variable in Swift 4 using Annotation. Here

it is important to note that if we are not using type annotation, then it becomes mandatory

to provide an initial value for the variable, otherwise we can just declare our variable using
type annotation.

import Cocoa

var varA = 42

print(varA)

var varB:Float

varB = 3.14159

print(varB)

When we run the above program using playground, we get the following result:

42

3.1415901184082

Naming Variables

The name of a variable can be composed of letters, digits, and the underscore character.

It must begin with either a letter or an underscore. Upper and lowercase letters are distinct
because Swift 4 is a case-sensitive programming language.

You can use simple or Unicode characters to name your variables. The following examples
shows how you can name the variables:

import Cocoa

var _var = "Hello, Swift 4!"

print(_var)

var 你好 = "你好世界"

print(你好)

Swift 4

17

When we run the above program using playground, we get the following result.

Hello, Swift 4!

你好世界

Printing Variables

You can print the current value of a constant or variable with the print function. You can

interpolate a variable value by wrapping the name in parentheses and escape it with a
backslash before the opening parenthesis: Following are valid examples:

import Cocoa

var varA = "Godzilla"

var varB = 1000.00

print("Value of \(varA) is more than \(varB) millions")

When we run the above program using playground, we get the following result.

Value of Godzilla is more than 1000.0 millions

Swift 4

18

Swift 4 also introduces Optionals type, which handles the absence of a value. Optionals
say either "there is a value, and it equals x" or "there isn't a value at all".

An Optional is a type on its own, actually one of Swift 4’s new super-powered enums. It

has two possible values, None and Some(T), where T is an associated value of the correct

data type available in Swift 4.

Here’s an optional Integer declaration:

var perhapsInt: Int?

Here’s an optional String declaration:

var perhapsStr: String?

The above declaration is equivalent to explicitly initializing it to nil which means no value:

var perhapsStr: String? = nil

Let's take the following example to understand how optionals work in Swift 4:

import Cocoa

var myString:String? = nil

if myString != nil {

 print(myString)

}else{

 print("myString has nil value")

}

When we run the above program using playground, we get the following result:

myString has nil value

Optionals are similar to using nil with pointers in Objective-C, but they work for any type,
not just classes.

Forced Unwrapping

If you defined a variable as optional, then to get the value from this variable, you will

have to unwrap it. This just means putting an exclamation mark at the end of the

variable.

Let's take a simple example:

6. Swift 4 – Optionals

Swift 4

19

import Cocoa

var myString:String?

myString = "Hello, Swift 4!"

if myString != nil {

 print(myString)

}else{

 print("myString has nil value")

}

When we run the above program using playground, we get the following result:

Optional("Hello, Swift 4!")

Now let's apply unwrapping to get the correct value of the variable:

import Cocoa

var myString:String?

myString = "Hello, Swift 4!"

if myString != nil {

 print(myString!)

}else{

 print("myString has nil value")

}

When we run the above program using playground, we get the following result.

Hello, Swift 4!

Automatic Unwrapping

You can declare optional variables using exclamation mark instead of a question mark.

Such optional variables will unwrap automatically and you do not need to use any further

exclamation mark at the end of the variable to get the assigned value. Let's take a simple
example:

Swift 4

20

import Cocoa

var myString:String!

myString = "Hello, Swift 4!"

if myString != nil {

 print(myString)

}else{

 print("myString has nil value")

}

When we run the above program using playground, we get the following result:

Hello, Swift 4!

Optional Binding

Use optional binding to find out whether an optional contains a value, and if so, to make

that value available as a temporary constant or variable.

An optional binding for the if statement is as follows:

if let constantName = someOptional {

 statements

}

Let's take a simple example to understand the usage of optional binding:

import Cocoa

var myString:String?

myString = "Hello, Swift 4!"

if let yourString = myString {

 print("Your string has - \(yourString)")

}else{

 print("Your string does not have a value")

}

When we run the above program using playground, we get the following result:

Your string has - Hello, Swift 4!

Swift 4

21

Swift 4 also introduces Tuples type, which are used to group multiple values in a single
compound Value.

The values in a tuple can be of any type, and do not need to be of same type.

For example, (“Tutorials Point”, 123) is a tuple with two values, one of string Type, and
other is integer type. It is a legal command.

let ImplementationError = (501, “Not implemented”) is an error when something on the

server is not implemented, It returns two values. Error Code, and Description.

You can create tuples from as many values as you want and from any number of different
data types.

Here’s the syntax of Tuple declaration:

var TupleName = (Value1, value2,… any number of values)

Here’s a Tuple declaration:

var error501 = (501, “Not implemented”)

You can access the values of tuple using the index numbers that start from 0.

Here’s an example of accessing tuple Values:

print(“The code is\(error501.0)”)

print(“The definition of error is\(error501.1)”)

You can name the variables of a tuple while declaring , and you can call them using their
names :

var error501 = (errorCode: 501, description: “Not Implemented”)

print(error501.errorCode) // prints 501.

Tuples are helpful in returning multiple values from a function. Like, a web application

might return a tuple of type (“String”, Int) to show whether the loading was successful or
failed.

By returning different values in a tuple we can make decisions depending on different tuple
types.

Note : Tuples are useful for temporary values and are not suited for complex data.

7. Swift 4 – Tuples

Swift 4

22

Constants refer to fixed values that a program may not alter during its execution. Constants

can be of any of the basic data types like an integer constant, a floating constant, a character
constant, or a string literal. There are enumeration constants as well.

Constants are treated just like regular variables except the fact that their values cannot

be modified after their definition.

Constants Declaration

Before you use constants, you must declare them using let keyword as follows:

let constantName = <initial value>

Following is a simple example to show how to declare a constant in Swift 4:

import Cocoa

let constA = 42

print(constA)

When we run the above program using playground, we get the following result:

42

Type Annotations

You can provide a type annotation when you declare a constant, to be clear about the
kind of values the constant can store. Following is the syntax:

var constantName:<data type> = <optional initial value>

The following example shows how to declare a constant in Swift 4 using Annotation. Here

it is important to note that it is mandatory to provide an initial value while creating a
constant:

import Cocoa

let constA = 42

print(constA)

let constB:Float = 3.14159

print(constB)

8. Swift 4 – Constants

Swift 4

23

When we run the above program using playground, we get the following result.

42

3.1415901184082

Naming Constants

The name of a constant can be composed of letters, digits, and the underscore character.

It must begin with either a letter or an underscore. Upper and lowercase letters are distinct
because Swift 4 is a case-sensitive programming language.

You can use simple or Unicode characters to name your variables. Following are valid

examples:

import Cocoa

let _const = "Hello, Swift 4!"

print(_const)

let 你好 = "你好世界"

print(你好)

When we run the above program using playground, we get the following result:

Hello, Swift 4!

你好世界

Printing Constants

You can print the current value of a constant or variable using print function. You can

interpolate a variable value by wrapping the name in parentheses and escape it with a
backslash before the opening parenthesis: Following are valid examples:

import Cocoa

let constA = "Godzilla"

let constB = 1000.00

print("Value of \(constA) is more than \(constB) millions")

When we run the above program using playground, we get the following result:

Value of Godzilla is more than 1000.0 millions

Swift 4

24

A literal is the source code representation of a value of an integer, floating-point number,
or string type. The following are examples of literals:

42 // Integer literal

3.14159 // Floating-point literal

"Hello, world!" // String literal

Integer Literals

An integer literal can be a decimal, binary, octal, or hexadecimal constant. Binary literals

begin with 0b, octal literals begin with 0o, and hexadecimal literals begin with 0x and
nothing for decimal.

Here are some examples of integer literals:

let decimalInteger = 17 // 17 in decimal notation

let binaryInteger = 0b10001 // 17 in binary notation

let octalInteger = 0o21 // 17 in octal notation

let hexadecimalInteger = 0x11 // 17 in hexadecimal notation

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an

exponent part. You can represent floating point literals either in decimal form or
hexadecimal form.

Decimal floating-point literals consist of a sequence of decimal digits followed by either a
decimal fraction, a decimal exponent, or both.

Hexadecimal floating-point literals consist of a 0x prefix, followed by an optional
hexadecimal fraction, followed by a hexadecimal exponent.

Here are some examples of floating-point literals:

let decimalDouble = 12.1875

let exponentDouble = 1.21875e1

let hexadecimalDouble = 0xC.3p0

String Literals

A string literal is a sequence of characters surrounded by double quotes, with the following

form:

9. Swift 4 – Literals

Swift 4

25

"characters"

String literals cannot contain an unescaped double quote ("), an unescaped backslash (\),

a carriage return, or a line feed. Special characters can be included in string literals using
the following escape sequences:

Escape sequence Meaning

\0 Null Character

\\ \character

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single Quote

\" Double Quote

\000 Octal number of one to three digits

\xhh... Hexadecimal number of one or more digits

The following example shows how to use a few string literals:

import Cocoa

let stringL = "Hello\tWorld\n\nHello\'Swift 4\'"

print(stringL)

When we run the above program using playground, we get the following result:

Hello World

Hello'Swift 4'

Boolean Literals

There are three Boolean literals and they are part of standard Swift 4 keywords:

 A value of true representing true.

 A value of false representing false.

 A value of nil representing no value.

Swift 4

26

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. Objective-C is rich in built-in operators and provides the following types of

operators:

 Arithmetic Operators

 Comparison Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Range Operators

 Misc Operators

This tutorial will explain the arithmetic, relational, logical, bitwise, assignment and other
operators one by one.

Arithmetic Operators

The following table shows all the arithmetic operators supported by Swift 4 language.
Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Adds two operands A + B will give 30

− Subtracts second operand from the first A − B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by denominator B / A will give 2

% Modulus Operator and remainder of after an
integer/float division

B % A will give 0

++ Increment operator increases integer value by one A++ will give 11

-- Decrement operator decreases integer value by one A-- will give 9

10. Swift 4 – Operators

Swift 4

27

Comparison Operators

The following table shows all the relational operators supported by Swift 4 language.

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

== Checks if the values of two operands are equal or
not; if yes, then the condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal or

not; if values are not equal, then the condition
becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than

the value of right operand; if yes, then the condition
becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the

value of right operand; if yes, then the condition

becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or

equal to the value of right operand; if yes, then the
condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or

equal to the value of right operand; if yes, then the
condition becomes true.

(A <= B) is true.

Logical Operators

The following table shows all the logical operators supported by Swift 4 language. Assume

variable A holds 1 and variable B holds 0, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands are
non-zero, then the condition becomes true.

(A && B) is false.

||

Called Logical OR Operator. If any of the two

operands is non-zero, then the condition becomes
true.

(A || B) is true.

Swift 4

28

!
Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true, then
the Logical NOT operator will make it false.

!(A && B) is true.

Bitwise Operators

Bitwise operators work on bits and perform bit by bit operation. The truth tables for &, |,

and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60; and B = 13;

In binary format, they will be as follows:

A = 0011 1100

B = 0000 1101

A & B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

Swift 4

29

Bitwise operators supported by Swift 4 language are listed in the following table. Assume
variable A holds 60 and variable B holds 13, then:

Operator Description Example

&
Binary AND Operator copies a bit to the
result, if it exists in both operands.

(A & B) will give 12, which
is 0000 1100

|
Binary OR Operator copies a bit, if it exists
in either operand.

(A | B) will give 61, which
is 0011 1101

^
Binary XOR Operator copies the bit, if it is
set in one operand but not both.

(A ^ B) will give 49, which
is 0011 0001

~
Binary Ones Complement Operator is unary
and has the effect of 'flipping' bits.

(~A) will give -61, which

is 1100 0011 in 2's
complement form.

<<

Binary Left Shift Operator. The left operands

value is moved left by the number of bits
specified by the right operand.

A << 2 will give 240, which

is 1111 0000

>>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right
operand.

A >> 2 will give 15, which
is 0000 1111

Assignment Operators

Swift 4 supports the following assignment operators:

Operator Description Example

=
Simple assignment operator, Assigns values from

right side operands to left side operand

C = A + B will assign

value of A + B into C

+=
Add AND assignment operator, It adds right

operand to the left operand and assigns the result
to left operand

C += A is equivalent to
C = C + A

-=

Subtract AND assignment operator, It subtracts

right operand from the left operand and assigns the
result to left operand

C -= A is equivalent to

C = C - A

*=
Multiply AND assignment operator, It multiplies

right operand with the left operand and assigns the

result to left operand

C *= A is equivalent to
C = C * A

Swift 4

30

/=
Divide AND assignment operator, It divides left

operand with the right operand and assigns the
result to left operand

C /= A is equivalent to
C = C / A

%=

Modulus AND assignment operator, It takes

modulus using two operands and assigns the result
to left operand

C %= A is equivalent to

C = C % A

<<=
Left shift AND assignment operator C <<= 2 is same as C

= C << 2

>>=
Right shift AND assignment operator C >>= 2 is same as C

= C >> 2

&=
Bitwise AND assignment operator C &= 2 is same as C =

C & 2

^=
bitwise exclusive OR and assignment operator C ^= 2 is same as C =

C ^ 2

|=
bitwise inclusive OR and assignment operator C |= 2 is same as C =

C | 2

Range Operators

Swift 4 includes two range operators, which are shortcuts for expressing a range of values.
The following table explains these two operators.

Operator Description Example

Closed Range

(a...b) defines a range that

runs from a to b, and includes
the values a and b.

1...5 gives 1, 2, 3, 4 and 5

Half-Open Range
(a..< b) defines a range that

runs from a to b, but does not

include b.

1..< 5 gives 1, 2, 3, and 4

One- sided Range

a… , defines a range that runs
from a to end of elements

…a , defines a range starting
from start to a

1… gives 1 , 2,3… end of elements

…2 gives beginning… to 1,2

Swift 4

31

Misc Operators

Swift 4 supports a few other important operators including range and ? : which are

explained in the following table.

Operator Description Example

Unary Minus
The sign of a numeric value can
be toggled using a prefixed -

-3 or -4

Unary Plus
Returns the value it operates on,

without any change.
+6 gives 6

Ternary Conditional Condition ? X : Y
If Condition is true ? Then
value X : Otherwise value Y

Operators Precedence

Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators have higher precedence than others; for

example, the multiplication operator has higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

Operator Type Operator Associativity

Primary Expression
Operators

() [] . expr++ expr-- left-to-right

Unary Operators

* & + - ! ~ ++expr --expr

* / %

+ -

>> <<

< > <= >=

== !=

right-to-left

Binary Operators

&

^

|

&&

left-to-right

Swift 4

32

||

Ternary Operator ?: right-to-left

Assignment Operators
= += -= *= /= %= >>= <<= &=
^= |=

right-to-left

Comma , left-to-right

Swift 4

33

Decision making structures require that the programmer specifies one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to be
executed if the condition is determined to be false.

Following is the general from of a typical decision making structure found in most of the
programming languages:

Swift 4 provides the following types of decision making statements. Click the following

links to check their detail.

Statement Description

if statement

An if statement consists of a Boolean expression

followed by one or more statements.

if...else statement

An if statement can be followed by an optional else

statement, which executes when the Boolean
expression is false.

if...else if...else Statement

An if statement can be followed by an optional else

if...else statement, which is very useful to test various

conditions using single if...else if statement.

11. Swift 4 – Decision Making

http://www.tutorialspoint.com/swift/if_statement.htm
http://www.tutorialspoint.com/swift/if_else_statement.htm
http://www.tutorialspoint.com/swift/if_else_if_else_statement.htm

Swift 4

34

nested if statements

You can use one if or else if statement inside

another if or else if statement(s).

switch statement

A switch statement allows a variable to be tested for

equality against a list of values.

if Statement

An if statement consists of a Boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in Swift 4 is as follows:

if boolean_expression {

 /* statement(s) will execute if the boolean expression is true */

}

If the Boolean expression evaluates to true, then the block of code inside the if statement

will be executed. If Boolean expression evaluates to false, then the first set of code after

the end of the if statement (after the closing curly brace) will be executed.

Flow Diagram

http://www.tutorialspoint.com/swift/nested_if_statement.htm
http://www.tutorialspoint.com/swift/switch_statement.htm

Swift 4

35

Example

import Cocoa

var varA:Int = 10;

/* Check the boolean condition using if statement */

if varA < 20 {

 /* If condition is true then print the following */

 print("varA is less than 20");

}

print("Value of variable varA is \(varA)");

When we run the above program using playground, we get the following result.

varA is less than 20

Value of variable varA is 10

if-else Statement

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

Syntax

The syntax of an if...else statement in Swift 4 is as follows:

if boolean_expression {

 /* statement(s) will execute if the boolean expression is true */

} else {

 /* statement(s) will execute if the boolean expression is false */

}

If the Boolean expression evaluates to true, then the if block of code will be executed,
otherwise else block of code will be executed.

Swift 4

36

Flow Diagram

Example

var varA:Int = 100;

/* Check the boolean condition using if statement */

if varA < 20 {

 /* If condition is true then print the following */

 print("varA is less than 20");

} else {

 /* If condition is false then print the following */

 print("varA is not less than 20");

}

print("Value of variable varA is \(varA)");

When the above code is compiled and executed, it produces the following result:

varA is not less than 20

Value of variable varA is 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very
useful to test various conditions using single if...else if statement.

Swift 4

37

When using if, else if, else statements, there are a few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in Swift 4 is as follows:

if boolean_expression_1 {

 /* Executes when the boolean expression 1 is true */

} else if boolean_expression_2 {

 /* Executes when the boolean expression 2 is true */

} else if boolean_expression_3 {

 /* Executes when the boolean expression 3 is true */

} else {

 /* Executes when the none of the above condition is true */

}

Example

import Cocoa

var varA:Int = 100;

/* Check the boolean condition using if statement */

if varA == 20 {

 /* If condition is true then print the following */

 print("varA is equal to than 20");

} else if varA == 50 {

 /* If condition is true then print the following */

 print("varA is equal to than 50");

} else {

 /* If condition is false then print the following */

 print("None of the values is matching");

}

print("Value of variable varA is \(varA)");

Swift 4

38

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Value of variable varA is 100

Nested If Statements

It is always legal in Swift 4 to nest if-else statements, which means you can use one if or
else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if boolean_expression_1 {

 /* Executes when the boolean expression 1 is true */

 if boolean_expression_2 {

 /* Executes when the boolean expression 2 is true */

 }

}

You can nest else if...else in the similar way as you have nested if statement.

Example

import Cocoa

var varA:Int = 100;

var varB:Int = 200;

/* Check the boolean condition using if statement */

if varA == 100 {

 /* If condition is true then print the following */

 print("First condition is satisfied");

 if varB == 200 {

 /* If condition is true then print the following */

 print("Second condition is also satisfied");

 }

}

print("Value of variable varA is \(varA)");

print("Value of variable varB is \(varB)");

Swift 4

39

When the above code is compiled and executed, it produces the following result:

First condition is satisfied

Second condition is also satisfied

Value of variable varA is 100

Value of variable varB is 200

Switch Statement

A switch statement in Swift 4 completes its execution as soon as the first matching case

is completed instead of falling through the bottom of subsequent cases like it happens in

C and C++ programing languages. Following is a generic syntax of switch statement in C
and C++:

switch(expression){

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

Here we need to use break statement to come out of a case statement otherwise

execution control will fall through the subsequent case statements available below to

matching case statement.

Syntax

Following is a generic syntax of switch statement available in Swift 4:

switch expression {

 case expression1 :

 statement(s)

 fallthrough /* optional */

 case expression2, expression3 :

 statement(s)

 fallthrough /* optional */

Swift 4

40

 default : /* Optional */

 statement(s);

}

If we do not use fallthrough statement, then the program will come out of switch

statement after executing the matching case statement. We will take the following two
examples to make its functionality clear.

Example 1

Following is an example of switch statement in Swift 4 programming without using

fallthrough:

import Cocoa

var index = 10

switch index {

 case 100 :

 print("Value of index is 100")

 case 10,15 :

 print("Value of index is either 10 or 15")

 case 5 :

 print("Value of index is 5")

 default :

 print("default case")

}

When the above code is compiled and executed, it produces the following result:

Value of index is either 10 or 15

Example 2

Following is an example of switch statement in Swift 4 programming with fallthrough:

import Cocoa

var index = 10

switch index {

 case 100 :

 print("Value of index is 100")

Swift 4

41

 fallthrough

 case 10,15 :

 print("Value of index is either 10 or 15")

 fallthrough

 case 5 :

 print("Value of index is 5")

 default :

 print("default case")

}

When the above code is compiled and executed, it produces the following result:

Value of index is either 10 or 15

Value of index is 5

The ? : Operator

We have covered conditional operator ? : in the previous chapter which can be used to

replace if...else statements. It has the following general form:

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then

Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated and its value becomes the value of the expression.

Swift 4

42

There may be a situation when you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function

is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times.
Following is the general from of a loop statement in most of the programming languages:

Swift 4 programming language provides the following kinds of loop to handle looping
requirements. Click the following links to check their detail.

Loop Type Description

for-in

This loop performs a set of statements for each item in a range,
sequence, collection, or progression.

while loop

Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the

loop body.

repeat...while loop

Like a while statement, except that it tests the condition at the
end of the loop body.

12. Swift 4 – Loops

http://www.tutorialspoint.com/swift/swift_for_in.htm
http://www.tutorialspoint.com/swift/swift_while_loop.htm
http://www.tutorialspoint.com/swift/swift_do_while_loop.htm

Swift 4

43

for-in Loop

The for-in loop iterates over collections of items, such as ranges of numbers, items in an

array, or characters in a string:

Syntax

The syntax of a for-in loop in Swift 4 programming language is:

for index in var {

 statement(s)

}

Flow Diagram

Example

import Cocoa

var someInts:[Int] = [10, 20, 30]

for index in someInts {

 print("Value of index is \(index)")

}

Swift 4

44

When the above code is executed, it produces the following result:

Value of index is 10

Value of index is 20

Value of index is 30

Swift 4 – while Loop

A while loop statement in Swift 4 programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

The syntax of a while loop in Swift 4 programming language is:

while condition

{

 statement(s)

}

Here statement(s) may be a single statement or a block of statements. The

condition may be any expression. The loop iterates while the condition is true. When the

condition becomes false, the program control passes to the line immediately following the
loop.

The number 0, the strings '0' and "", the empty list(), and undef are all false in a Boolean

context and all other values are true. Negation of a true value by ! or not returns a special
false value.

Flow Diagram

Swift 4

45

The key point of a while loop is that the loop might not ever run. When the condition is

tested and the result is false, the loop body will be skipped and the first statement after
the while loop will be executed.

Example

import Cocoa

var index = 10

while index < 20

{

 print("Value of index is \(index)")

 index = index + 1

}

Here we are using comparison operator < to compare the value of the variable index

against 20. While the value of index is less than 20, the while loop continues executing a

block of code next to it and as soon as the value of index becomes equal to 20, it comes
out. When executed, the above code produces the following result:

Value of index is 10

Value of index is 11

Value of index is 12

Value of index is 13

Value of index is 14

Value of index is 15

Value of index is 16

Value of index is 17

Value of index is 18

Value of index is 19

Swift 4 – repeat-while Loop

Unlike for and while loops, which test the loop condition at the top of the loop,
the repeat...while loop checks its condition at the bottom of the loop.

A repeat...while loop is similar to a while loop, except that a repeat...while loop is

guaranteed to execute at least once.

Syntax

The syntax of a repeat...while loop in Swift 4 is:

repeat

{

Swift 4

46

 statement(s);

}while(condition);

It should be noted that the conditional expression appears at the end of the loop, so the

statement(s) in the loop execute once before the condition is tested. If the condition is

true, the control flow jumps back up to repeat, and the statement(s) in the loop execute
again. This process repeats until the given condition becomes false.

The number 0, the strings '0' and "", the empty list(), and undef are all false in a Boolean

context and all other values are true. Negation of a true value by ! or not returns a special
false value.

Flow Diagram

Example

import Cocoa

var index = 10

repeat{

 print("Value of index is \(index)")

 index = index + 1

}while index < 20

When the above code is executed, it produces the following result:

Swift 4

47

Value of index is 10

Value of index is 11

Value of index is 12

Value of index is 13

Value of index is 14

Value of index is 15

Value of index is 16

Value of index is 17

Value of index is 18

Value of index is 19

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

Swift 4 supports the following control statements. Click the following links to check their detail.

Control Statement Description

continue statement

This statement tells a loop to stop what it is doing and start
again at the beginning of the next iteration through the loop.

break statement

Terminates the loop statement and transfers execution to

the statement immediately following the loop.

fallthrough statement

The fallthrough statement simulates the behavior of Swift 4
switch to C-style switch.

Swift 4 – continue Statement

The continue statement in Swift 4 tells a loop to stop what it is doing and start again at

the beginning of the next iteration through the loop.

For a for loop, the continue statement causes the conditional test and increments the

portions of the loop to execute. For while and do...while loops, the continue statement
causes the program control to pass to the conditional tests.

Syntax

http://www.tutorialspoint.com/swift/swift_continue_statement.htm
http://www.tutorialspoint.com/swift/swift_break_statement.htm
http://www.tutorialspoint.com/swift/swift_fallthrough_statement.htm

Swift 4

48

The syntax for a continue statement in Swift 4 is as follows:

continue

Flow Diagram

Example

import Cocoa

var index = 10

do{

 index = index + 1

 if(index == 15){

 continue

 }

 print("Value of index is \(index)")

}while index < 20

When the above code is compiled and executed, it produces the following result:

Value of index is 11

Value of index is 12

Value of index is 13

Value of index is 14

Swift 4

49

Value of index is 16

Value of index is 17

Value of index is 18

Value of index is 19

Value of index is 20

Swift 4 – break Statement

The break statement in C programming language has the following two usages:

 When a break statement is encountered inside a loop, the loop is immediately terminated
and the program control resumes at the next statement following the loop.

 It can be used to terminate a case in switch statement (covered in the next chapter).

If you are using nested loops (i.e., one loop inside another loop), then the break

statement will stop the execution of the innermost loop and start executing the next line
of the code after the block.

Syntax

The syntax for a break statement in Swift 4 is as follows:

break

Flow Diagram

Example

Swift 4

50

import Cocoa

var index = 10

do{

 index = index + 1

 if(index == 15){

 break

 }

 print("Value of index is \(index)")

}while index < 20

When the above code is compiled and executed, it produces the following result:

Value of index is 11

Value of index is 12

Value of index is 13

Value of index is 14

Swift 4 – Fallthrough Statement

A switch statement in Swift 4 completes its execution as soon as the first matching case

is completed instead of falling through the bottom of subsequent cases as it happens in C
and C++ programming languages.

The generic syntax of a switch statement in C and C++ is as follows:

switch(expression){

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

Swift 4

51

Here we need to use a break statement to come out of a case statement, otherwise the

execution control will fall through the subsequent case statements available below the
matching case statement.

Syntax

The generic syntax of a switch statement in Swift 4 is as follows:

switch expression {

 case expression1 :

 statement(s)

 fallthrough /* optional */

 case expression2, expression3 :

 statement(s)

 fallthrough /* optional */

 default : /* Optional */

 statement(s);

}

If we do not use fallthrough statement, then the program will come out of the switch

statement after executing the matching case statement. We will take the following two
examples to make its functionality clear.

Example 1

The following example shows how to use a switch statement in Swift 4 programming
without fallthrough:

import Cocoa

var index = 10

switch index {

 case 100 :

 print("Value of index is 100")

 case 10,15 :

 print("Value of index is either 10 or 15")

 case 5 :

 print("Value of index is 5")

 default :

 print("default case")

}

Swift 4

52

When the above code is compiled and executed, it produces the following result:

Value of index is either 10 or 15

Example 2

The following example shows how to use a switch statement in Swift 4 programming with

fallthrough:

import Cocoa

var index = 10

switch index {

 case 100 :

 print("Value of index is 100")

 fallthrough

 case 10,15 :

 print("Value of index is either 10 or 15")

 fallthrough

 case 5 :

 print("Value of index is 5")

 default :

 print("default case")

}

When the above code is compiled and executed, it produces the following result:

Value of index is either 10 or 15

Value of index is 5

Swift 4

53

Strings in Swift 4 are an ordered collection of characters, such as "Hello, World!" and they

are represented by the Swift 4 data type String, which in turn represents a collection of

values of Character type.

Create a String

You can create a String either by using a string literal or creating an instance of a String
class as follows:

import Cocoa

// String creation using String literal

var stringA = "Hello, Swift 4!"

print(stringA)

// String creation using String instance

var stringB = String("Hello, Swift 4!")

print(stringB)

//Multiple line string

let stringC = "" Hey this is a

example of multiple Line
string by tutorialsPoint """

print(stringC)

When the above code is compiled and executed, it produces the following result:

Hello, Swift 4!

Hello, Swift 4!

Hey this is a

example of multiple Line
string by tutorialsPoint

Empty String

You can create an empty String either by using an empty string literal or creating an

instance of String class as shown below. You can also check whether a string is empty or
not using the Boolean property isEmpty.

13. Swift 4 – Strings

Swift 4

54

import Cocoa

// Empty string creation using String literal

var stringA = ""

if stringA.isEmpty {

 print("stringA is empty")

} else {

 print("stringA is not empty")

}

// Empty string creation using String instance

let stringB = String()

if stringB.isEmpty {

 print("stringB is empty")

} else {

 print("stringB is not empty")

}

When the above code is compiled and executed, it produces the following result:

stringA is empty

stringB is empty

String Constants

You can specify whether your String can be modified (or mutated) by assigning it to a

variable, or it will be constant by assigning it to a constant using let keyword as shown

below:

import Cocoa

// stringA can be modified

var stringA = "Hello, Swift 4!"

stringA + = "--Readers--"

print(stringA)

// stringB can not be modified

let stringB = String("Hello, Swift 4!")

Swift 4

55

stringB + = "--Readers--"

print(stringB)

When the above code is compiled and executed, it produces the following result:

Playground execution failed: error: <EXPR>:10:1: error: 'String' is not
convertible to '@lvalue UInt8'

stringB + = "--Readers--"

String Interpolation

String interpolation is a way to construct a new String value from a mix of constants,
variables, literals, and expressions by including their values inside a string literal.

Each item (variable or constant) that you insert into the string literal is wrapped in a pair
of parentheses, prefixed by a backslash. Here is a simple example:

import Cocoa

var varA = 20

let constA = 100

var varC:Float = 20.0

var stringA = "\(varA) times \(constA) is equal to \(varC * 100)"

print(stringA)

When the above code is compiled and executed, it produces the following result:

20 times 100 is equal to 2000.0

String Concatenation

You can use the + operator to concatenate two strings or a string and a character, or two
characters. Here is a simple example:

import Cocoa

let constA = "Hello,"

let constB = "World!"

var stringA = constA + constB

print(stringA)

When the above code is compiled and executed, it produces the following result:

Swift 4

56

Hello,World!

String Length

Swift 4 strings do not have a length property, but you can use the global count() function

to count the number of characters in a string. Here is a simple example:

import Cocoa

var varA = "Hello, Swift 4!"

print("\(varA), length is \(count(varA))")

When the above code is compiled and executed, it produces the following result:

Hello, Swift 4!, length is 13

String Comparison

You can use the == operator to compare two strings variables or constants. Here is a
simple example:

import Cocoa

var varA = "Hello, Swift 4!"

var varB = "Hello, World!"

if varA == varB {

 print("\(varA) and \(varB) are equal")

} else {

 print("\(varA) and \(varB) are not equal")

}

When the above code is compiled and executed, it produces the following result:

Hello, Swift 4! and Hello, World! are not equal

String Iterating

Strings are again a collection of values in swift 4, so we can iterate over string using loops.

import Cocoa

Swift 4

57

for chars in “ThisString”

{

print(chars, terminator: “ ”)

}

When the above code is compiled and executed, it produces the following result:

T h i s S t r i n g

Unicode Strings

You can access a UTF-8 and UTF-16 representation of a String by iterating over its utf8
and utf16 properties as demonstrated in the following example:

import Cocoa

var unicodeString = "Dog‼🐶"

print("UTF-8 Codes: ")

for code in unicodeString.utf8 {

 print("\(code) ")

}

print("\n")

print("UTF-16 Codes: ")

for code in unicodeString.utf16 {

 print("\(code) ")

}

When the above code is compiled and executed, it produces the following result:

UTF-8 Codes:

68 111 103 226 128 188 240 159 144 182

UTF-16 Codes:

68 111 103 8252 55357 56374

String Functions & Operators

Swift 4 supports a wide range of methods and operators related to Strings:

S.No Functions/Operators & Purpose

Swift 4

58

1
isEmpty

A Boolean value that determines whether a string is empty or not.

2

hasPrefix(prefix: String)

Function to check whether a given parameter string exists as a prefix of the string
or not.

3

hasSuffix(suffix: String)

Function to check whether a given parameter string exists as a prefix of the string
or not.

4
toInt()

Function to convert numeric String value into Integer.

5
count()

Global function to count the number of Characters in a string.

6
utf8

Property to return a UTF-8 representation of a string.

7
utf16

Property to return a UTF-16 representation of a string.

8
unicodeScalars

Property to return a Unicode Scalar representation of a string.

9

+

Operator to concatenate two strings, or a string and a character, or two
characters.

10
+=

Operator to append a string or character to an existing string.

11
==

Operator to determine the equality of two strings.

12

<

Operator to perform a lexicographical comparison to determine whether one
string evaluates as less than another.

13
==

Operator to determine the equality of two strings.

14
startIndex

To get the value at starting index of string

Swift 4

59

15
endIndex

To get the value at ending index of string.

16

Indices

To access the indeces one by one. i.e all the characters of string one by one.

17

insert(“Value”, at: position)

To insert a value at a position.

18

remove(at: position)

removeSubrange(range)

to remove a value at a position, or to remove a range of values from string.

19

reversed()

returns the reverse of a string

Swift 4

60

A character in Swift 4 is a single character String literal, addressed by the data type
Character. Take a look at the following example. It uses two Character constants:

import Cocoa

let char1: Character = "A"

let char2: Character = "B"

print("Value of char1 \(char1)")

print("Value of char2 \(char2)")

When the above code is compiled and executed, it produces the following result:

Value of char1 A

Value of char2 B

If you try to store more than one character in a Character type variable or constant, then

Swift 4 will not allow that. Try to type the following example in Swift 4 Playground and

you will get an error even before compilation.

import Cocoa

// Following is wrong in Swift 4

let char: Character = "AB"

print("Value of char \(char)")

Empty Character Variables

It is not possible to create an empty Character variable or constant which will have an

empty value. The following syntax is not possible:

import Cocoa

// Following is wrong in Swift 4

let char1: Character = ""

var char2: Character = ""

print("Value of char1 \(char1)")

14. Swift 4 – Characters

Swift 4

61

print("Value of char2 \(char2)")

Accessing Characters from Strings

As explained while discussing Swift 4's Strings, String represents a collection of Character

values in a specified order. So we can access individual characters from the given String
by iterating over that string with a for-in loop:

import Cocoa

for ch in "Hello" {

 print(ch)

}

When the above code is compiled and executed, it produces the following result:

H

e

l

l

o

Concatenating Strings with Characters

The following example demonstrates how a Swift 4's Character can be concatenated with

Swift 4's String.

import Cocoa

var varA:String = "Hello "

let varB:Character = "G"

varA.append(varB)

print("Value of varC = \(varA)")

When the above code is compiled and executed, it produces the following result:

Value of varC Hello G

Swift 4

62

Swift 4 arrays are used to store ordered lists of values of the same type. Swift 4 puts strict
checking which does not allow you to enter a wrong type in an array, even by mistake.

If you assign a created array to a variable, then it is always mutable, which means you

can change it by adding, removing, or changing its items; but if you assign an array to a

constant, then that array is immutable, and its size and contents cannot be changed.

Creating Arrays

You can create an empty array of a certain type using the following initializer syntax:

var someArray = [SomeType]()

Here is the syntax to create an array of a given size a* and initialize it with a value:

var someArray = [SomeType](count: NumbeOfElements, repeatedValue: InitialValue)

You can use the following statement to create an empty array of Int type having 3
elements and the initial value as zero:

var someInts = [Int](count: 3, repeatedValue: 0)

Following is one more example to create an array of three elements and assign three
values to that array:

var someInts:[Int] = [10, 20, 30]

Accessing Arrays

You can retrieve a value from an array by using subscript syntax, passing the index of

the value you want to retrieve within square brackets immediately after the name of the

array as follows:

var someVar = someArray[index]

Here, the index starts from 0 which means the first element can be accessed using the

index as 0, the second element can be accessed using the index as 1 and so on. The
following example shows how to create, initialize, and access arrays:

import Cocoa

var someInts = [Int](count: 3, repeatedValue: 10)

var someVar = someInts[0]

15. Swift 4 – Arrays

Swift 4

63

print("Value of first element is \(someVar)")

print("Value of second element is \(someInts[1])")

print("Value of third element is \(someInts[2])")

When the above code is compiled and executed, it produces the following result:

Value of first element is 10

Value of second element is 10

Value of third element is 10

Modifying Arrays

You can use append() method or addition assignment operator (+=) to add a new item

at the end of an array. Take a look at the following example. Here, initially, we create an
empty array and then add new elements into the same array:

import Cocoa

var someInts = [Int]()

someInts.append(20)

someInts.append(30)

someInts += [40]

var someVar = someInts[0]

print("Value of first element is \(someVar)")

print("Value of second element is \(someInts[1])")

print("Value of third element is \(someInts[2])")

When the above code is compiled and executed, it produces the following result:

Value of first element is 20

Value of second element is 30

Value of third element is 40

You can modify an existing element of an Array by assigning a new value at a given index
as shown in the following example:

Swift 4

64

import Cocoa

var someInts = [Int]()

someInts.append(20)

someInts.append(30)

someInts += [40]

// Modify last element

someInts[2] = 50

var someVar = someInts[0]

print("Value of first element is \(someVar)")

print("Value of second element is \(someInts[1])")

print("Value of third element is \(someInts[2])")

When the above code is compiled and executed, it produces the following result:

Value of first element is 20

Value of second element is 30

Value of third element is 50

Iterating Over an Array

You can use for-in loop to iterate over the entire set of values in an array as shown in the
following example:

import Cocoa

var someStrs = [String]()

someStrs.append("Apple")

someStrs.append("Amazon")

someStrs += ["Google"]

for item in someStrs {

 print(item)

}

When the above code is compiled and executed, it produces the following result:

Apple

Swift 4

65

Amazon

Google

You can use enumerate() function which returns the index of an item along with its value
as shown below in the following example:

import Cocoa

var someStrs = [String]()

someStrs.append("Apple")

someStrs.append("Amazon")

someStrs += ["Google"]

for (index, item) in enumerate(someStrs) {

 print("Value at index = \(index) is \(item)")

}

When the above code is compiled and executed, it produces the following result:

Value at index = 0 is Apple

Value at index = 1 is Amazon

Value at index = 2 is Google

Adding Two Arrays

You can use the addition operator (+) to add two arrays of the same type which will yield
a new array with a combination of values from the two arrays as follows:

import Cocoa

var intsA = [Int](count:2, repeatedValue: 2)

var intsB = [Int](count:3, repeatedValue: 1)

var intsC = intsA + intsB

for item in intsC {

 print(item)

}

When the above code is compiled and executed, it produces the following result:

2

Swift 4

66

2

1

1

1

The count Property

You can use the read-only count property of an array to find out the number of items in
an array shown below:

import Cocoa

var intsA = [Int](count:2, repeatedValue: 2)

var intsB = [Int](count:3, repeatedValue: 1)

var intsC = intsA + intsB

print("Total items in intsA = \(intsA.count)")

print("Total items in intsB = \(intsB.count)")

print("Total items in intsC = \(intsC.count)")

When the above code is compiled and executed, it produces the following result:

Total items in intsA = 2

Total items in intsB = 3

Total items in intsC = 5

The empty Property

You can use the read-only empty property of an array to find out whether an array is

empty or not as shown below:

import Cocoa

var intsA = [Int](count:2, repeatedValue: 2)

var intsB = [Int](count:3, repeatedValue: 1)

var intsC = [Int]()

print("intsA.isEmpty = \(intsA.isEmpty)")

print("intsB.isEmpty = \(intsB.isEmpty)")

Swift 4

67

print("intsC.isEmpty = \(intsC.isEmpty)")

When the above code is compiled and executed, it produces the following result:

intsA.isEmpty = false

intsB.isEmpty = false

intsC.isEmpty = true

Swift 4

68

Swift 4 sets are used to store distinct values of same types but they don’t have definite
ordering as arrays have.

You can use sets instead of arrays if ordering of elements is not an issue, or if you want
to ensure that there are no duplicate values. (sets allow only distinct values.)

A type must be hashable to be stored in a set. A hash value is a Int value that is equal for

equal objects. For example, if x == y, then x.hashvalue == y.hashvalue.

All the basic swift values are of hashable type by default and may be used as set values.

Creating Sets

You can create an empty set of a certain type using the following initializer syntax:

var someSet = Set<Character>() //Character can be replaced by data type of set.

Accessing and modifying Sets

You can access or modify a set using its methods and properties:

"count" method can be used to show the number of elements in the set.

someSet.count // prints the number of elements

"insert" method can be used to insert values in set.

someSet.insert("c") // adds the element to Set.

Similarly, isEmpty can be used to check if set is empty.

someSet.isEmpty // returns true or false depending on the set Elements.

"remove" method can be used to remove value in set.

someSet.remove("c")

// removes a element , removeAll() can be used to remove all elements

"contains" method can be used to check existence of value in a set.

someSet.contains("c") // to check if set contains this value.

16. Swift 4 – Sets

Swift 4

69

Iterating over a Set

You can iterate over a set using for-in loop:

for items in someSet

{

print(someSet)

}

//Swift sets are not in an ordered way, to iterate over a set in ordered way use

for items in someSet.sorted()

{

print(someSet)

}

Performing Set Operations

You can perform baisc set operations on swift Sets.

Following are the methods for performing set operations:

 Intersection

 Union

 subtracting

let evens: Set = [10,12,14,16,18]

let odds: Set = [5,7,9,11,13]

let primes = [2,3,5,7]

odds.union(evens).sorted()

// [5,7,9,10,11,12,13,14,16,18]

odds.intersection(evens).sorted()

//[]

odds.subtracting(primes).sorted()

//[3,4,4,4,13]

Swift 4

70

Swift 4 dictionaries are used to store unordered lists of values of the same type. Swift 4

puts strict checking which does not allow you to enter a wrong type in a dictionary even

by mistake.

Swift 4 dictionaries use unique identifier known as a key to store a value which later can

be referenced and looked up through the same key. Unlike items in an array, items in a

dictionary do not have a specified order. You can use a dictionary when you need to
look up values based on their identifiers.

A dictionary key can be either an integer or a string without a restriction, but it should be

unique within a dictionary.

If you assign a created dictionary to a variable, then it is always mutable which means

you can change it by adding, removing, or changing its items. But if you assign a dictionary

to a constant, then that dictionary is immutable, and its size and contents cannot be
changed.

Creating Dictionary

You can create an empty dictionary of a certain type using the following initializer syntax:

var someDict = [KeyType: ValueType]()

You can use the following simple syntax to create an empty dictionary whose key will be

of Int type and the associated values will be strings:

var someDict = [Int: String]()

Here is an example to create a dictionary from a set of given values:

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

Sequence Based Initialization

Swift 4 allows you to create Dictionary from tuples (Key-Value Pairs.)

var cities = [“Delhi”,”Bangalore”,”Hyderabad”]

You can use the following simple syntax to create an empty dictionary whose key will be

of Int type and the associated values will be strings:

var Distance = [2000,10, 620]

Here is an example to create a dictionary from a set of given values:

let cityDistanceDict = Dictionary(uniqueKeysWithValues: zip(cities, Distance))

The above lines of code will create a dictionary with Cities as key and Distance as Value

17. Swift 4 – Dictionaries

Swift 4

71

Filtering

Swift 4 allows you to filter values from a dictionary.

var closeCities = cityDistanceDict.filter { $0.value < 1000 }

If we run the above code our closeCities Dictionary will be.

["Bangalore" : 10 , "Hyderabad" : 620]

Dictionary Grouping

Swift 4 allows you to create grouping of Dictionary values.

var cities = ["Delhi","Bangalore","Hyderabad","Dehradun","Bihar"]

You can use the following simple syntax to group the values of dictionary according to first
alphabet.

var GroupedCities = Dictionary(grouping: cities) { $0.first! }

The result of above code will be

["D" :["Delhi","Dehradun"], "B" : ["Bengaluru","Bihar"], "H" : ["Hyderabad"]]

Accessing Dictionaries

You can retrieve a value from a dictionary by using subscript syntax, passing the key of

the value you want to retrieve within square brackets immediately after the name of the

dictionary as follows:

var someVar = someDict[key]

Let's check the following example to create, initialize, and access values from a dictionary:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

var someVar = someDict[1]

print("Value of key = 1 is \(someVar)")

print("Value of key = 2 is \(someDict[2])")

print("Value of key = 3 is \(someDict[3])")

When the above code is compiled and executed, it produces the following result:

Value of key = 1 is Optional("One")

Swift 4

72

Value of key = 2 is Optional("Two")

Value of key = 3 is Optional("Three")

Modifying Dictionaries

You can use updateValue(forKey:) method to add an existing value to a given key of

the dictionary. This method returns an optional value of the dictionary's value type. Here

is a simple example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

var oldVal = someDict.updateValue("New value of one", forKey: 1)

var someVar = someDict[1]

print("Old value of key = 1 is \(oldVal)")

print("Value of key = 1 is \(someVar)")

print("Value of key = 2 is \(someDict[2])")

print("Value of key = 3 is \(someDict[3])")

When the above code is compiled and executed, it produces the following result:

Old value of key = 1 is Optional("One")

Value of key = 1 is Optional("New value of one")

Value of key = 2 is Optional("Two")

Value of key = 3 is Optional("Three")

You can modify an existing element of a dictionary by assigning new value at a given key

as shown in the following example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

var oldVal = someDict[1]

someDict[1] = "New value of one"

var someVar = someDict[1]

print("Old value of key = 1 is \(oldVal)")

print("Value of key = 1 is \(someVar)")

Swift 4

73

print("Value of key = 2 is \(someDict[2])")

print("Value of key = 3 is \(someDict[3])")

When the above code is compiled and executed, it produces the following result:

Old value of key = 1 is Optional("One")

Value of key = 1 is Optional("New value of one")

Value of key = 2 is Optional("Two")

Value of key = 3 is Optional("Three")

Remove Key-Value Pairs

You can use removeValueForKey() method to remove a key-value pair from a

dictionary. This method removes the key-value pair if it exists and returns the removed
value, or returns nil if no value existed. Here is a simple example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

var removedValue = someDict.removeValueForKey(2)

print("Value of key = 1 is \(someDict[1])")

print("Value of key = 2 is \(someDict[2])")

print("Value of key = 3 is \(someDict[3])")

When the above code is compiled and executed, it produces the following result:

Value of key = 1 is Optional("One")

Value of key = 2 is nil

Value of key = 3 is Optional("Three")

You can also use subscript syntax to remove a key-value pair from a dictionary by
assigning a value of nil for that key. Here is a simple example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

someDict[2] = nil

print("Value of key = 1 is \(someDict[1])")

print("Value of key = 2 is \(someDict[2])")

Swift 4

74

print("Value of key = 3 is \(someDict[3])")

When the above code is compiled and executed, it produces the following result:

Value of key = 1 is Optional("One")

Value of key = 2 is nil

Value of key = 3 is Optional("Three")

Value of key = 4 is nil

Iterating Over a Dictionary

You can use a for-in loop to iterate over the entire set of key-value pairs in a Dictionary
as shown in the following example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

for (key, value) in someDict {

 print("Dictionary key \(key) - Dictionary value \(value)")

}

When the above code is compiled and executed, it produces the following result:

Dictionary key 1 - Dictionary value One

Dictionary key 2 - Dictionary value Two

Dictionary key 3 - Dictionary value Three

You can use enumerate() function which returns the index of the item along with its
(key, value) pair as shown below in the example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

for (key, value) in enumerate(someDict) {

 print("Dictionary key \(key) - Dictionary value \(value)")

}

When the above code is compiled and executed, it produces the following result:

Dictionary key 0 - Dictionary value (1, One)

Swift 4

75

Dictionary key 1 - Dictionary value (2, Two)

Dictionary key 2 - Dictionary value (3, Three)

Convert to Arrays

You can extract a list of key-value pairs from a given dictionary to build separate arrays
for both keys and values. Here is an example:

import Cocoa

var someDict:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

let dictKeys = [Int](someDict.keys)

let dictValues = [String](someDict.values)

print("Print Dictionary Keys")

for (key) in dictKeys {

 print("\(key)")

}

print("Print Dictionary Values")

for (value) in dictValues {

 print("\(value)")

}

When the above code is compiled and executed, it produces the following result:

Print Dictionary Keys

1

2

3

Print Dictionary Values

One

Two

Three

Swift 4

76

The count Property

You can use the read-only count property of a dictionary to find out the number of items

in a dictionary as shown below:

import Cocoa

var someDict1:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

var someDict2:[Int:String] = [4:"Four", 5:"Five"]

print("Total items in someDict1 = \(someDict1.count)")

print("Total items in someDict2 = \(someDict2.count)")

When the above code is compiled and executed, it produces the following result:

Total items in someDict1 = 3

Total items in someDict2 = 2

The empty Property

You can use read-only empty property of a dictionary to find out whether a dictionary is
empty or not, as shown below:

import Cocoa

var someDict1:[Int:String] = [1:"One", 2:"Two", 3:"Three"]

var someDict2:[Int:String] = [4:"Four", 5:"Five"]

var someDict3:[Int:String] = [Int:String]()

print("someDict1 = \(someDict1.isEmpty)")

print("someDict2 = \(someDict2.isEmpty)")

print("someDict3 = \(someDict3.isEmpty)")

When the above code is compiled and executed, it produces the following result:

someDict1 = false

someDict2 = false

someDict3 = true

Swift 4

77

A function is a set of statements organized together to perform a specific task. A Swift 4

function can be as simple as a simple C function to as complex as an Objective C language

function. It allows us to pass local and global parameter values inside the function calls.

 Function Declaration: It tells the compiler about a function's name, return type,

and parameters.

 Function Definition: It provides the actual body of the function.

Swift 4 functions contain parameter type and its return types.

Function Definition

In Swift 4, a function is defined by the "func" keyword. When a function is newly defined,

it may take one or several values as input 'parameters' to the function and it will process

the functions in the main body and pass back the values to the functions as output 'return
types'.

Every function has a function name, which describes the task that the function performs.

To use a function, you "call" that function with its name and pass input values (known as

arguments) that match the types of the function's parameters. Function parameters are
also called as 'tuples'.

A function's arguments must always be provided in the same order as the function's
parameter list and the return values are followed by ->.

Syntax

func funcname(Parameters) -> returntype

{

 Statement1

 Statement2

 Statement N

 return parameters

}

Take a look at the following code. The student’s name is declared as string datatype

declared inside the function 'student' and when the function is called, it will return student’s
name.

func student(name: String) -> String {

 return name

}

print(student("First Program"))

18. Swift 4 – Functions

Swift 4

78

print(student("About Functions"))

When we run the above program using playground, we get the following result:

First Program

About Functions

Calling a Function

Let us suppose we defined a function called 'display' to Consider for example to display

the numbers a function with function name 'display' is initialized first with argument 'no1'

which holds integer data type. Then the argument 'no1' is assigned to argument 'a' which

hereafter will point to the same data type integer. Now the argument 'a' is returned to the

function. Here display() function will hold the integer value and return the integer values
when each and every time the function is invoked.

func display(no1: Int) -> Int {

 let a = no1

 return a

}

print(display(100))

print(display(200))

When we run above program using playground, we get the following result:

100

200

Parameters and Return Values

Swift 4 provides flexible function parameters and its return values from simple to complex

values. Similar to that of C and Objective C, functions in Swift 4 may also take several
forms.

Functions with Parameters

A function is accessed by passing its parameter values to the body of the function. We can

pass single to multiple parameter values as tuples inside the function.

func mult(no1: Int, no2: Int) -> Int {

 return no1*no2

}

print(mult(2,20))

print(mult(3,15))

Swift 4

79

print(mult(4,30))

When we run above program using playground, we get the following result:

40

45

120

Functions without Parameters

We may also have functions without any parameters.

Syntax

func funcname() -> datatype {

 return datatype

}

Following is an example having a function without a parameter:

func votersname() -> String {

 return "Alice"

}

print(votersname())

When we run the above program using playground, we get the following result:

Alice

Functions with Return Values

Functions are also used to return string, integer, and float data type values as return

types. To find out the largest and smallest number in a given array function 'ls' is declared

with large and small integer datatypes.

An array is initialized to hold integer values. Then the array is processed and each and

every value in the array is read and compared for its previous value. When the value is

lesser than the previous one it is stored in 'small' argument, otherwise it is stored in 'large'
argument and the values are returned by calling the function.

func ls(array: [Int]) -> (large: Int, small: Int) {

 var lar = array[0]

 var sma = array[0]

 for i in array[1..<array.count] {

 if i < sma {

Swift 4

80

 sma = i

 } else if i > lar {

 lar = i

 }

 }

 return (lar, sma)

}

let num = ls([40,12,-5,78,98])

print("Largest number is: \(num.large) and smallest number is: \(num.small)")

When we run the above program using playground, we get the following result:

Largest number is: 98 and smallest number is: -5

Functions without Return Values

Some functions may have arguments declared inside the function without any return

values. The following program declares a and b as arguments to the sum() function. inside

the function itself the values for arguments a and b are passed by invoking the function

call sum() and its values are printed thereby eliminating return values.

func sum(a: Int, b: Int) {

 let a = a + b

 let b = a - b

 print(a, b)

}

sum(20, 10)

sum(40,10)

sum(24,6)

When we run the above program using playground, we get the following result:

(30, 20)

(50, 40)

(30, 24)

Functions with Optional Return Types

Swift 4 introduces 'optional' feature to get rid of problems by introducing a safety measure.

Consider for example we are declaring function values return type as integer but what will

happen when the function returns a string value or either a nil value. In that case compiler
will return an error value. 'optional' are introduced to get rid of these problems.

Swift 4

81

Optional functions will take two forms 'value' and a 'nil'. We will mention 'Optionals' with
the key reserved character '?' to check whether the tuple is returning a value or a nil value.

func minMax(array: [Int]) -> (min: Int, max: Int)? {

 if array.isEmpty { return nil }

 var currentMin = array[0]

 var currentMax = array[0]

 for value in array[1..<array.count] {

 if value < currentMin {

 currentMin = value

 } else if value > currentMax {

 currentMax = value

 }

 }

 return (currentMin, currentMax)

}

if let bounds = minMax([8, -6, 2, 109, 3, 71]) {

 print("min is \(bounds.min) and max is \(bounds.max)")

}

When we run above program using playground, we get following result

min is -6 and max is 109

'Optionals' are used to check 'nil' or garbage values thereby consuming lot of time in
debugging and make the code efficient and readable for the user.

Functions Local Vs External Parameter Names

Local Parameter Names

Local parameter names are accessed inside the function alone.

func sample(number: Int) {

 print(number)

}

Here, the func sample argument number is declared as internal variable since it is

accessed internally by the function sample(). Here the 'number' is declared as local

variable but the reference to the variable is made outside the function with the following
statement:

func sample(number: Int) {

 print(number)

Swift 4

82

}

sample(1)

sample(2)

sample(3)

When we run the above program using playground, we get the following result:

1

2

3

External Parameter Names

External parameter names allow us to name a function parameters to make their purpose

more clear. For example below you can name two function parameters and then call that

function as follows:

func pow(firstArg a: Int, secondArg b: Int) -> Int {

 var res = a

 for _ in 1..<b {

 res = res * a

 }

 print(res)

 return res

}

pow(firstArg:5, secondArg:3)

When we run the above program using playground, we get the following result:

125

Variadic Parameters

When we want to define function with multiple number of arguments, then we can declare

the members as 'variadic' parameters. Parameters can be specified as variadic by (···)

after the parameter name.

func vari<N>(members: N...){

 for i in members {

 print(i)

 }

}

vari(4,3,5)

Swift 4

83

vari(4.5, 3.1, 5.6)

vari("Swift 4", "Enumerations", "Closures")

When we run the above program using playground, we get the following result:

4

3

5

4.5

3.1

5.6

Swift 4

Enumerations

Closures

Constant, Variable, and I/O Parameters

Functions by default consider the parameters as 'constant', whereas the user can declare

the arguments to the functions as variables also. We already discussed that 'let' keyword

is used to declare constant parameters and variable parameters is defined with 'var'
keyword.

I/O parameters in Swift 4 provide functionality to retain the parameter values even though

its values are modified after the function call. At the beginning of the function parameter

definition, 'inout' keyword is declared to retain the member values.

It derives the keyword 'inout' since its values are passed 'in' to the function and its values

are accessed and modified by its function body and it is returned back 'out' of the function
to modify the original argument.

Variables are only passed as an argument for in-out parameter since its values alone are

modified inside and outside the function. Hence no need to declare strings and literals as

in-out parameters. '&' before a variable name refers that we are passing the argument to
the in-out parameter.

func temp(inout a1: Int, inout b1: Int) {

 let t = a1

 a1 = b1

 b1 = t

}

var no = 2

var co = 10

temp(&no, &co)

print("Swapped values are \(no), \(co)")

When we run the above program using playground, we get the following result:

Swift 4

84

Swapped values are 10, 2

Function Types & its Usage

Each and every function follows the specific function by considering the input parameters

and outputs the desired result.

func inputs(no1: Int, no2: Int) -> Int {

 return no1/no2

}

Following is an example:

func inputs(no1: Int, no2: Int) -> Int {

 return no1/no2

}

print(inputs(20,10))

print(inputs(36,6))

When we run the above program using playground, we get the following result:

2

6

Here the function is initialized with two arguments no1 and no2 as integer data types and

its return type is also declared as 'int'

Func inputstr(name: String) -> String {

 return name

}

Here the function is declared as string datatype.

Functions may also have void data types and such functions won't return anything.

func inputstr() {

 print("Swift 4 Functions")

 print("Types and its Usage")

}

inputstr()

When we run the above program using playground, we get the following result:

Swift 4 Functions

Types and its Usage

Swift 4

85

The above function is declared as a void function with no arguments and no return values.

Using Function Types

Functions are first passed with integer, float or string type arguments and then it is passed
as constants or variables to the function as mentioned below.

var addition: (Int, Int) -> Int = sum

Here sum is a function name having 'a' and 'b' integer variables which is now declared as

a variable to the function name addition. Hereafter both addition and sum function both

have same number of arguments declared as integer datatype and also return integer

values as references.

func sum(a: Int, b: Int) -> Int {

 return a + b

}

var addition: (Int, Int) -> Int = sum

print("Result: \(addition(40, 89))")

When we run the above program using playground, we get the following result:

Result: 129

Function Types as Parameter Types & Return Types

We can also pass the function itself as parameter types to another function.

func sum(a: Int, b: Int) -> Int {

 return a + b

}

var addition: (Int, Int) -> Int = sum

print("Result: \(addition(40, 89))")

func another(addition: (Int, Int) -> Int, a: Int, b: Int) {

 print("Result: \(addition(a, b))")

}

another(sum, 10, 20)

When we run the above program using playground, we get the following result:

Result: 129

Result: 30

Swift 4

86

Nested Functions

A nested function provides the facility to call the outer function by invoking the inside

function.

func calcDecrement(forDecrement total: Int) -> () -> Int {

 var overallDecrement = 0

 func decrementer() -> Int {

 overallDecrement -= total

 return overallDecrement

 }

 return decrementer

}

let decrem = calcDecrement(forDecrement: 30)

print(decrem())

When we run the above program using playground, we get the following result:

-30

Swift 4

87

Closures in Swift 4 are similar to that of self-contained functions organized as blocks and

called anywhere like C and Objective C languages. Constants and variable references

defined inside the functions are captured and stored in closures. Functions are considered
as special cases of closures and it takes the following three forms:

Global Functions Nested Functions Closure Expressions

Have a name. Do not
capture any values

Have a name. Capture

values from enclosing

function

Unnamed Closures capture

values from the adjacent

blocks

Closure expressions in Swift 4 language follow crisp, optimization, and lightweight syntax
styles which includes.

 Inferring parameter and return value types from context.

 Implicit returns from single-expression closures.

 Shorthand argument names and

 Trailing closure syntax

Syntax

Following is a generic syntax to define closure which accepts parameters and returns a
data type:

{(parameters) -> return type in

 statements

}

Following is a simple example:

let studname = { print("Welcome to Swift 4 Closures") }

studname()

When we run the above program using playground, we get the following result:

Welcome to Swift 4 Closures

The following closure accepts two parameters and returns a Bool value:

{(Int, Int) -> Bool in

 Statement1

 Statement 2

19. Swift 4 – Closures

Swift 4

88

 Statement n

}

Following is a simple example:

let divide = {(val1: Int, val2: Int) -> Int in

 return val1 / val2

}

let result = divide(200, 20)

print (result)

When we run the above program using playground, we get the following result:

10

Expressions in Closures

Nested functions provide a convenient way of naming and defining blocks of code. Instead

of representing the whole function declaration and name constructs are used to denote

shorter functions. Representing the function in a clear brief statement with focused syntax
is achieved through closure expressions.

Ascending Order Program

Sorting a string is achieved by the Swift 4s key reserved function "sorted" which is already

available in the standard library. The function will sort the given strings in the ascending

order and returns the elements in a new array with same size and data type mentioned in
the old array. The old array remains the same.

Two arguments are represented inside the sorted function

 Values of Known type represented as arrays.

 Array contents (Int, Int) and returns a Boolean value (Bool) if the array is sorted

properly it will return true value otherwise it will return false.

A normal function with input string is written and passed to the sorted function to get the
strings sorted to new array which is shown below

func ascend(s1: String, s2: String) -> Bool {

 return s1 > s2

}

let stringcmp = ascend("Swift 4", "great")

print (stringcmp)

Swift 4

89

When we run above program using playground, we get following result

true

The initial array to be sorted for icecream is given as "Swift 4" and "great". Function to

sort the array is declared as string datatype and its return type is mentioned as Boolean.

Both the strings are compared and sorted in ascending order and stored in a new array.

If the sorting is performed successful the function will return a true value else it will return
false.

Closure expression syntax uses

 constant parameters,

 variable parameters, and

 inout parameters.

Closure expression did not support default values. Variadic parameters and Tuples can
also be used as parameter types and return types.

let sum = {(no1: Int, no2: Int) -> Int in

 return no1 + no2

}

let digits = sum(10, 20)

print(digits)

When we run the above program using playground, we get the following result:

30

The parameters and return type declarations mentioned in the function statement can also

be represented by the inline closure expression function with 'in' keyword. Once declaring
parameter and return types 'in' keyword is used to denote that the body of the closure.

Single Expression Implicit Returns

Here, the function type of the sorted function's second argument makes it clear that a Bool

value must be returned by the closure. Because the closure's body contains a single

expression (s1 > s2) that returns a Bool value, there is no ambiguity, and the return
keyword can be omitted.

To return a Single expression statement in expression closures 'return' keyword is omitted
in its declaration part.

let count = [5, 10, -6, 75, 20]

var descending = sorted(count, { n1, n2 in n1 > n2 })

var ascending = sorted(count, { n1, n2 in n1 < n2 })

print(descending)

Swift 4

90

print(ascending)

When we run the above program using playground, we get the following result:

[75, 20, 10, 5, -6]

[-6, 5, 10, 20, 75]

The statement itself clearly defines that when string1 is greater than string 2 return true
otherwise false hence return statement is omitted here.

Known Type Closures

Consider the addition of two numbers. We know that addition will return the integer

datatype. Hence known type closures are declared as

let sub = {(no1: Int, no2: Int) -> Int in

 return no1 - no2

}

let digits = sub(10, 20)

print(digits)

When we run the above program using playground, we get the following result:

-10

Declaring Shorthand Argument Names as Closures

Swift 4 automatically provides shorthand argument names to inline closures, which can be

used to refer to the values of the closure's arguments by the names $0, $1, $2, and so
on.

var shorthand: (String, String) -> String

shorthand = { $1 }

print(shorthand("100", "200"))

Here, $0 and $1 refer to the closure's first and second String arguments.

When we run above program using playground, we get following result

200

Swift 4 facilitates the user to represent Inline closures as shorthand argument names by
representing $0, $1, $2 --- $n.

Closures argument list is omitted in definition section when we represent shorthand

argument names inside closure expressions. Based on the function type the shorthand

argument names will be derived. Since the shorthand argument is defined in expression
body the 'in' keyword is omitted.

Swift 4

91

Closures as Operator Functions

Swift 4 provides an easy way to access the members by just providing operator functions

as closures. In the previous examples keyword 'Bool' is used to return either 'true' when
the strings are equal otherwise it returns 'false'.

The expression is made even simpler by operator function in closure as

let numb = [98, -20, -30, 42, 18, 35]

var sortedNumbers = numb.sorted({

 (left: Int, right: Int) -> Bool in

 return left < right

})

let asc = numb.sorted(<)

print(asc)

When we run the above program using playground, we get the following result:

[-30, -20, 18, 35, 42, 98]

Closures as Trailers

Passing the function's final argument to a closure expression is declared with the help of

'Trailing Closures'. It is written outside the function () with {}. Its usage is needed when

it is not possible to write the function inline on a single line.

reversed = sorted(names) { $0 > $1}

where {$0 > $1} are represented as trailing closures declared outside (names).

import Foundation

var letters = ["North", "East", "West", "South"]

let twoletters = letters.map({ (state: String) -> String in

 return state.substringToIndex(advance(state.startIndex, 2)).uppercaseString

})

let stletters = letters.map() { $0.substringToIndex(advance($0.startIndex,
2)).uppercaseString }

print(stletters)

When we run the above program using playground, we get the following result:

[NO, EA, WE, SO]

Swift 4

92

Capturing Values and Reference Types

In Swift 4, capturing constants and variables values is done with the help of closures. It

further refers and modify the values for those constants and variables inside the closure
body even though the variables no longer exists.

Capturing constant and variable values is achieved by using nested function by writing
function with in the body of other function.

A nested function captures

 Outer function arguments.

 Capture constants and variables defined within the Outer function.

In Swift 4, when a constant or a variable is declared inside a function, reference to that

variables are also automatically created by the closure. It also provides the facility to refer
more than two variables as the same closure as follows

let decrem = calcDecrement(forDecrement: 18)

decrem()

Here oneDecrement and Decrement variables will both point the same memory block as
closure reference.

func calcDecrement(forDecrement total: Int) -> () -> Int {

 var overallDecrement = 100

 func decrementer() -> Int {

 overallDecrement -= total

 print(overallDecrement)

 return overallDecrement

 }

 return decrementer

}

let decrem = calcDecrement(forDecrement: 18)

decrem()

decrem()

decrem()

When we run the above program using playground, we get the following result:

82

64

46

When each and every time the outer function calcDecrement is called it invokes the

decrementer() function and decrements the value by 18 and returns the result with the
help of outer function calcDecrement. Here calcDecrement acts as a closure.

Swift 4

93

Even though the function decrementer() does not have any arguments closure by default

refers to variables 'overallDecrement' and 'total' by capturing its existing values. The copy

of the values for the specified variables are stored with the new decrementer() function.

Swift 4 handles memory management functions by allocating and deallocating memory

spaces when the variables are not in use.

Swift 4

94

An enumeration is a user-defined data type which consists of set of related values.
Keyword enum is used to defined enumerated data type.

Enumeration Functionality

Enumeration in Swift 4 also resembles the structure of C and Objective C.

 It is declared in a class and its values are accessed through the instance of that

class.

 Initial member value is defined using enum intializers.

 Its functionality is also extended by ensuring standard protocol functionality.

Syntax

Enumerations are introduced with the enum keyword and place their entire definition
within a pair of braces:

enum enumname {

 // enumeration values are described here

}

For example, you can define an enumeration for days of week as follows:

enum DaysofaWeek {

 case Sunday

 case Monday

 case Saturday

}

Example

enum names{

 case Swift 4

 case Closures

}

var lang = names.Closures

lang = .Closures

switch lang

{

20. Swift 4 – Enumerations

Swift 4

95

 case .Swift 4:

 print("Welcome to Swift 4")

 case .Closures:

 print("Welcome to Closures")

 default:

 print("Introduction")

}

When we run the above program using playground, we get the following result:

Welcome to Closures

Swift 4 enumeration does not assign its members default value like C and Objective C.

Instead the members are explicitly defined by their enumeration names. Enumeration
name should start with a capital letter (Ex: enum DaysofaWeek).

var weekDay = DaysofaWeek.Sunday

Here the Enumeration name 'DaysofaWeek' is assigned to a variable weekday.Sunday. It

informs the compiler that the datatype belongs to Sunday will be assigned to subsequent

enum members of that particular class. Once the enum member datatype is defined, the
members can be accessed by passing values and further computations.

Enumeration with Switch Statement

Swift 4 'Switch' statement also follows the multi way selection. Only one variable is

accessed at a particular time based on the specified condition. Default case in switch

statement is used to trap unspecified cases.

enum Climate{

 case India

 case America

 case Africa

 case Australia

}

var season = Climate.America

season = .America

switch season

{

 case .India:

 print("Climate is Hot")

 case .America:

Swift 4

96

 print("Climate is Cold")

 case .Africa:

 print("Climate is Moderate")

 case .Australia:

 print("Climate is Rainy")

 default:

 print("Climate is not predictable")

}

When we run the above program using playground, we get the following result:

Climte is Cold

The program first defines Climate as the enumeration name. Then its members like 'India',

'America', 'Africa' and 'Australia' are declared belonging to class 'Climate'. Now the

member America is assigned to a Season Variable. Further, Switch case will see the values

corresponding to .America and it will branch to that particular statement. The output will

be displayed as "Climate is Cold". Likewise all the members can be accessed through

switch statements. When the condition is not satisfied it prints by default 'Climate is not
predictable'.

Enumeration can be further classified in to associated values and raw values.

Difference between Associated Values and Raw Values

Associated Values Raw Values

Different Datatypes Same Datatypes

Ex: enum {10,0.8,"Hello"} Ex: enum {10,35,50}

Values are created based on constant or variable Prepopulated Values

Varies when declared each time Value for member is same

Enum with Associated Values

enum Student{

 case Name(String)

 case Mark(Int,Int,Int)

}

var studDetails = Student.Name("Swift 4")

var studMarks = Student.Mark(98,97,95)

switch studMarks {

 case .Name(let studName):

 print("Student name is: \(studName).")

Swift 4

97

 case .Mark(let Mark1, let Mark2, let Mark3):

 print("Student Marks are: \(Mark1),\(Mark2),\(Mark3).")

 default:

 print("Nothing")

}

When we run the above program using playground, we get the following result:

Swift 4

98

97

95

Consider for example to access the students name and marks secured in three subjects

enumeration name is declared as student and the members present in enum class are

name which belongs to string datatype, marks are represented as mark1, mark2 and
mark3 of datatype Integer. To access either the student name or marks they have scored

var studDetails = Student.Name("Swift 4")

var studMarks = Student.Mark(98,97,95)

Now, the switch case will print student name if that case block is executed otherwise it will

print the marks secured by the student. If both the conditions fail, the default block will
be executed.

Enum with Raw Values

Raw values can be strings, characters, or any of the integer or floating-point number types.

Each raw value must be unique within its enumeration declaration. When integers are used

for raw values, they auto-increment if no value is specified for some of the enumeration
members.

enum Month: Int {

 case January = 1, February, March, April, May, June, July, August,
September, October, November, December

}

let yearMonth = Month.May.rawValue

print("Value of the Month is: \(yearMonth).")

When we run the above program using playground, we get the following result:

Value of the Month is: 5.

Swift 4

98

Swift 4 provides a flexible building block of making use of constructs as Structures. By
making use of these structures once can define constructs methods and properties.

Unlike C and Objective C

 Structure need not require implementation files and interface.

 Structure allows us to create a single file and to extend its interface automatically

to other blocks.

In Structure the variable values are copied and passed in subsequent codes by returning

a copy of the old values so that the values cannot be altered.

Syntax

Structures are defined with a 'Struct' Keyword.

struct nameStruct {

 Definition 1

 Definition 2

 Definition N

}

Definition of a Structure

Consider for example, suppose we have to access students record containing marks of

three subjects and to find out the total of three subjects. Here markStruct is used to
initialize a structure with three marks as datatype 'Int'.

struct MarkStruct{

 var mark1: Int

 var mark2: Int

 var mark3: Int

}

Accessing the Structure and its Properties

The members of the structure are accessed by its structure name. The instances of the
structure are initialized by the 'let' keyword.

struct studentMarks {

21. Swift 4 – Structures

Swift 4

99

 var mark1 = 100

 var mark2 = 200

 var mark3 = 300

}

let marks = studentMarks()

print("Mark1 is \(marks.mark1)")

print("Mark2 is \(marks.mark2)")

print("Mark3 is \(marks.mark3)")

When we run the above program using playground, we get the following result:

Mark1 is 100

Mark2 is 200

Mark3 is 300

Students marks are accessed by the structure name 'studentMarks'. The structure

members are initialized as mark1, mark2, mark3 with integer type values. Then the

structure studentMarks() is passed to the 'marks' with 'let' keyword. Hereafter 'marks' will

contain the structure member values. Now the values are printed by accessing the

structure member values by '.' with its initialized names.

struct MarksStruct {

 var mark: Int

 init(mark: Int) {

 self.mark = mark

 }

}

var aStruct = MarksStruct(mark: 98)

var bStruct = aStruct // aStruct and bStruct are two structs with the same
value!

bStruct.mark = 97

print(aStruct.mark) // 98

print(bStruct.mark) // 97

When we run the above program using playground, we get the following result:

98

97

Swift 4

100

Best Usage Practices of Structures

Swift 4 language provides the functionality to define structures as custom data types for

building the function blocks. The instances of structure are passed by its value to the
defined blocks for further manipulations.

Need for having structures

 To encapsulate simple data values.

 To copy the encapsulated data and its associated properties by 'values' rather than

by 'references'.

 Structure to 'Copy' and 'Reference'.

Structures in Swift 4 pass their members with their values rather than by its references.

struct markStruct{

 var mark1: Int

 var mark2: Int

 var mark3: Int

 init(mark1: Int, mark2: Int, mark3: Int){

 self.mark1 = mark1

 self.mark2 = mark2

 self.mark3 = mark3

 }

}

var marks = markStruct(mark1: 98, mark2: 96, mark3:100)

print(marks.mark1)

print(marks.mark2)

print(marks.mark3)

When we run the above program using playground, we get the following result:

98

96

100

Swift 4

101

Another Example

struct markStruct{

 var mark1: Int

 var mark2: Int

 var mark3: Int

 init(mark1: Int, mark2: Int, mark3: Int){

 self.mark1 = mark1

 self.mark2 = mark2

 self.mark3 = mark3

 }

}

var fail = markStruct(mark1: 34, mark2: 42, mark3: 13)

print(fail.mark1)

print(fail.mark2)

print(fail.mark3)

When we run the above program using playground, we get the following result:

34

42

13

The structure 'markStruct' is defined first with its members mark1, mark2 and mark3.

Now the variables of member classes are initialized to hold integer values. Then the copy

of the structure members are created with 'self' Keyword. Once the copy of the structure

members are created structure block with its parameter marks are passed to 'marks'

variable which will now hold the students marks. Then the marks are printed as 98, 96,

100. Next step for the same structure members another instance named 'fail' is used to

point the same structure members with different marks. Then the results are now printed

as 34, 42, 13. This clearly explains that structures will have a copy of the member variables
then pass the members to their upcoming function blocks.

Swift 4

102

Classes in Swift 4 are building blocks of flexible constructs. Similar to constants, variables

and functions the user can define class properties and methods. Swift 4 provides us the

functionality that while declaring classes the users need not create interfaces or

implementation files. Swift 4 allows us to create classes as a single file and the external
interfaces will be created by default once the classes are initialized.

Benefits of having Classes

 Inheritance acquires the properties of one class to another class

 Type casting enables the user to check class type at run time

 Deinitializers take care of releasing memory resources

 Reference counting allows the class instance to have more than one reference

Common Characteristics of Classes and structures

 Properties are defined to store values

 Subscripts are defined for providing access to values

 Methods are initialized to improve functionality

 Initial state are defined by initializers

 Functionality are expanded beyond default values

 Confirming protocol functionality standards

Syntax

Class classname {

 Definition 1

 Definition 2

 Definition N

}

Class Definition

class student{

 var studname: String

 var mark: Int

 var mark2: Int

22. Swift 4 – Classes

Swift 4

103

}

The syntax for creating instances

let studrecord = student()

Example

class MarksStruct {

 var mark: Int

 init(mark: Int) {

 self.mark = mark

 }

}

class studentMarks {

 var mark = 300

}

let marks = studentMarks()

print("Mark is \(marks.mark)")

When we run the above program using playground, we get the following result:

Mark is 300

Accessing Class Properties as Reference Types

Class properties can be accessed by the '.' syntax. Property name is separated by a '.'

after the instance name.

class MarksStruct {

 var mark: Int

 init(mark: Int) {

 self.mark = mark

 }

}

class studentMarks {

 var mark1 = 300

 var mark2 = 400

 var mark3 = 900

}

Swift 4

104

let marks = studentMarks()

print("Mark1 is \(marks.mark1)")

print("Mark2 is \(marks.mark2)")

print("Mark3 is \(marks.mark3)")

When we run the above program using playground, we get the following result:

Mark1 is 300

Mark2 is 400

Mark3 is 900

Class Identity Operators

Classes in Swift 4 refers multiple constants and variables pointing to a single instance. To

know about the constants and variables pointing to a particular class instance identity

operators are used. Class instances are always passed by reference. In Classes NSString,

NSArray, and NSDictionary instances are always assigned and passed around as a
reference to an existing instance, rather than as a copy.

Identical to Operators Not Identical to Operators

Operator used is (===) Operator used is (!==)

Returns true when two constants or
variables pointing to a same instance

Returns true when two constants or variables
pointing to a different instance

class SampleClass: Equatable {

 let myProperty: String

 init(s: String) {

 myProperty = s

 }

}

func ==(lhs: SampleClass, rhs: SampleClass) -> Bool {

 return lhs.myProperty == rhs.myProperty

}

let spClass1 = SampleClass(s: "Hello")

let spClass2 = SampleClass(s: "Hello")

spClass1 === spClass2 // false

print("\(spClass1)")

Swift 4

105

spClass1 !== spClass2 // true

print("\(spClass2)")

When we run the above program using playground, we get the following result:

main.SampleClass

main.SampleClass

Swift 4

106

Swift 4 language provides properties for class, enumeration or structure to associate

values. Properties can be further classified into Stored properties and Computed

properties.

Difference between Stored Properties and Computed Properties

Stored Property Computed Property

Store constant and variable values as

instance

Calculate a value rather than storing the

value

Provided by classes and structures
Provided by classes, enumerations and

structures

Both Stored and Computed properties are associated with instances type. When the

properties are associated with its type values then it is defined as 'Type Properties'. Stored

and computed properties are usually associated with instances of a particular type.

However, properties can also be associated with the type itself. Such properties are known

as type properties. Property observers are also used

 To observe the value of the stored properties

 To observe the property of inherited subclass derived from superclass

Stored Properties

Swift 4 introduces Stored Property concept to store the instances of constants and

variables. Stored properties of constants are defined by the 'let' keyword and Stored

properties of variables are defined by the 'var' keyword.

 During definition Stored property provides 'default value'

 During Initialization the user can initialize and modify the initial values

struct Number

{

 var digits: Int

 let pi = 3.1415

}

var n = Number(digits: 12345)

n.digits = 67

print("\(n.digits)")

print("\(n.pi)")

23. Swift 4 – Properties

Swift 4

107

When we run the above program using playground, we get the following result:

67

3.1415

Consider the following line in the above code:

let pi = 3.1415

Here, the variable pi is initialized as a stored property value with the instance pi = 3.1415.
So, whenever the instance is referred it will hold the value 3.1415 alone.

Another method to have stored property is to have as constant structures. So the whole
instance of the structures will be considered as 'Stored Properties of Constants'.

struct Number

{

 var digits: Int

 let numbers = 3.1415

}

var n = Number(digits: 12345)

n.digits = 67

print("\(n.digits)")

print("\(n.numbers)")

n.numbers = 8.7

When we run the above program using playground, we get the following result:

error: cannot assign to 'numbers' in 'n'

n.numbers = 8.7

Instead of reinitializing the 'number' to 8.7 it will return an error message indicating that
the 'number' is declared as constant.

Lazy Stored Property

Swift 4 provides a flexible property called 'Lazy Stored Property' where it won't calculate

the initial values when the variable is initialized for the first time. 'lazy' modifier is used
before the variable declaration to have it as a lazy stored property.

Lazy Properties are used:

 To delay object creation.

 When the property is dependent on other parts of a class, that are not known yet

Swift 4

108

class sample {

 lazy var no = number() // `var` declaration is required.

}

class number {

 var name = "Swift 4"

}

var firstsample = sample()

print(firstsample.no.name)

When we run the above program using playground, we get the following result:

Swift 4

Instance Variables

In Objective C, Stored properties also have instance variables for back up purposes to

store the values declared in stored property.

Swift 4 integrates both these concepts into a single 'stored property' declaration. Instead

of having a corresponding instance variable and back up value 'stored property' contains

all integrated information defined in a single location about the variables property by
variable name, data type and memory management functionalities.

Computed Properties

Rather than storing the values computed properties provide a getter and an optional setter
to retrieve and set other properties and values indirectly.

class sample {

 var no1 = 0.0, no2 = 0.0

 var length = 300.0, breadth = 150.0

 var middle: (Double, Double) {

 get{

 return (length / 2, breadth / 2)

 }

 set(axis){

 no1 = axis.0 - (length / 2)

 no2 = axis.1 - (breadth / 2)

 }

Swift 4

109

 }

}

var result = sample()

print(result.middle)

result.middle = (0.0, 10.0)

print(result.no1)

print(result.no2)

When we run the above program using playground, we get the following result:

(150.0, 75.0)

-150.0

-65.0

When a computed property left the new value as undefined, the default value will be set
for that particular variable.

Computed Properties as Read-Only Properties

A read-only property in computed property is defined as a property with getter but no

setter. It is always used to return a value. The variables are further accessed through a '.'
Syntax but cannot be set to another value.

class film {

 var head = ""

 var duration = 0.0

 var metaInfo: [String:String] {

 return [

 "head": self.head,

 "duration":"\(self.duration)"

]

 }

}

var movie = film()

movie.head = "Swift 4 Properties"

movie.duration = 3.09

print(movie.metaInfo["head"]!)

print(movie.metaInfo["duration"]!)

When we run the above program using playground, we get the following result:

Swift 4

110

Swift 4 Properties

3.09

Computed Properties as Property Observers

In Swift 4 to observe and respond to property values Property Observers are used. Each

and every time when property values are set property observers are called. Except lazy

stored properties we can add property observers to 'inherited' property by method
'overriding'.

Property Observers can be defined by either

 Before Storing the value - willset

 After Storing the new value - didset

 When a property is set in an initializer willset and didset observers cannot be

called.

class Samplepgm {

 var counter: Int = 0{

 willSet(newTotal){

 print("Total Counter is: \(newTotal)")

 }

 didSet{

 if counter > oldValue {

 print("Newly Added Counter \(counter - oldValue)")

 }

 }

 }

}

let NewCounter = Samplepgm()

NewCounter.counter = 100

NewCounter.counter = 800

When we run the above program using playground, we get the following result:

Total Counter is: 100

Newly Added Counter 100

Total Counter is: 800

Newly Added Counter 700

Swift 4

111

Local and Global Variables

Local and global variable are declared for computing and observing the properties.

Local Variables Global Variables

Variables that are defined within a
function, method, or closure context.

Variables that are defined outside function,
method, closure, or type context.

Used to store and retrieve values. Used to store and retrieve values.

Stored properties is used to get and set
the values.

Stored properties is used to get and set the
values.

Computed properties are also used. Computed properties are also used.

Type Properties

Properties are defined in the Type definition section with curly braces {} and scope of the

variables are also defined previously. For defining type properties for value types 'static'
keyword is used and for class types 'class' keyword is used.

Syntax

struct Structname {

 static var storedTypeProperty = " "

 static var computedTypeProperty: Int {

 // return an Int value here

 }

}

enum Enumname {

 static var storedTypeProperty = " "

 static var computedTypeProperty: Int {

 // return an Int value here

 }

}

class Classname {

 class var computedTypeProperty: Int {

 // return an Int value here

 }

}

Swift 4

112

Querying and Setting Properties

Just like instance properties Type properties are queried and set with '.' Syntax just on the

type alone instead of pointing to the instance.

struct StudMarks {

 static let markCount = 97

 static var totalCount = 0

 var InternalMarks: Int = 0 {

 didSet {

 if InternalMarks > StudMarks.markCount {

 InternalMarks = StudMarks.markCount

 }

 if InternalMarks > StudMarks.totalCount {

 StudMarks.totalCount = InternalMarks

 }

 }

 }

}

var stud1Mark1 = StudMarks()

var stud1Mark2 = StudMarks()

stud1Mark1.InternalMarks = 98

print(stud1Mark1.InternalMarks)

stud1Mark2.InternalMarks = 87

print(stud1Mark2.InternalMarks)

When we run the above program using playground, we get the following result:

97

87

Swift 4

113

In Swift 4 language Functions associated with particular types are referred to as Methods.

In Objective C Classes are used to define methods, whereas Swift 4 language provides the

user flexibility to have methods for Classes, Structures and Enumerations.

Instance Methods

In Swift 4 language, Classes, Structures and Enumeration instances are accessed through
the instance methods.

Instance methods provide functionality

 To access and modify instance properties

 functionality related to the instance's need

Instance method can be written inside the {} curly braces. It has implicit access to

methods and properties of the type instance. When a specific instance of the type is called
it will get access to that particular instance.

Syntax

func funcname(Parameters) -> returntype

{

 Statement1

 Statement2

 Statement N

 return parameters

}

Example

class calculations {

 let a: Int

 let b: Int

 let res: Int

 init(a: Int, b: Int) {

 self.a = a

 self.b = b

 res = a + b

24. Swift 4 – Methods

Swift 4

114

 }

 func tot(c: Int) -> Int {

 return res - c

 }

 func result() {

 print("Result is: \(tot(20))")

 print("Result is: \(tot(50))")

 }

}

let pri = calculations(a: 600, b: 300)

pri.result()

When we run the above program using playground, we get the following result:

Result is: 880

Result is: 850

Class Calculations defines two instance methods:

 init() is defined to add two numbers a and b and store it in result 'res'

 tot() is used to subtract the 'res' from passing 'c' value

Finally, to print the calculations methods with values for a and b is called. Instance

methods are accessed with '.' dot syntax

Local and External Parameter Names

Swift 4 Functions describe both local and global declarations for their variables. Similarly,

Swift 4 Methods naming conventions also resembles as that of Objective C. But the

characteristics of local and global parameter name declarations are different for functions

and methods. The first parameter in Swift 4 are referred by preposition names as 'with',
'for' and 'by' for easy to access naming conventions.

Swift 4 provides the flexibility in methods by declaring first parameter name as local

parameter names and the remaining parameter names to be of global parameter names.

Here 'no1' is declared by Swift 4 methods as local parameter names. 'no2' is used for

global declarations and accessed through out the program.

class division {

 var count: Int = 0

 func incrementBy(no1: Int, no2: Int) {

 count = no1 / no2

 print(count)

Swift 4

115

 }

}

let counter = division()

counter.incrementBy(1800, no2: 3)

counter.incrementBy(1600, no2: 5)

counter.incrementBy(11000, no2: 3)

When we run the above program using playground, we get the following result:

600

320

3666

External Parameter Name with # and _ Symbol

Even though Swift 4 methods provide first parameter names for local declarations, the

user has the provision to modify the parameter names from local to global declarations.

This can be done by prefixing '#' symbol with the first parameter name. By doing so, the

first parameter can be accessed globally throughout the modules.

When the user needs to access the subsequent parameter names with an external name,
the methods name is overridden with the help of '_' symbol.

class multiplication {

 var count: Int = 0

 func incrementBy(#no1: Int, no2: Int) {

 count = no1 * no2

 print(count)

 }

}

let counter = multiplication()

counter.incrementBy(no1: 800, no2: 3)

counter.incrementBy(no1: 100, no2: 5)

counter.incrementBy(no1: 15000, no2: 3)

When we run the above program using playground, we get the following result:

2400

500

45000

Swift 4

116

Self property in Methods

Methods have an implicit property known as 'self' for all its defined type instances. 'Self'

property is used to refer the current instances for its defined methods.

class calculations {

 let a: Int

 let b: Int

 let res: Int

 init(a: Int, b: Int) {

 self.a = a

 self.b = b

 res = a + b

 print("Inside Self Block: \(res)")

 }

 func tot(c: Int) -> Int {

 return res - c

 }

 func result() {

 print("Result is: \(tot(20))")

 print("Result is: \(tot(50))")

 }

}

let pri = calculations(a: 600, b: 300)

let sum = calculations(a: 1200, b: 300)

pri.result()

sum.result()

When we run the above program using playground, we get the following result:

Inside Self Block: 900

Inside Self Block: 1500

Result is: 880

Result is: 850

Result is: 1480

Result is: 1450

Swift 4

117

Modifying Value Types from Instance Methods

In Swift 4 language structures and enumerations belong to value types which cannot be

altered by its instance methods. However, Swift 4 language provides flexibility to modify

the value types by 'mutating' behavior. Mutate will make any changes in the instance

methods and will return back to the original form after the execution of the method. Also,

by the 'self' property new instance is created for its implicit function and will replace the
existing method after its execution

struct area {

 var length = 1

 var breadth = 1

 func area() -> Int {

 return length * breadth

 }

 mutating func scaleBy(res: Int) {

 length *= res

 breadth *= res

 print(length)

 print(breadth)

 }

}

var val = area(length: 3, breadth: 5)

val.scaleBy(3)

val.scaleBy(30)

val.scaleBy(300)

When we run the above program using playground, we get the following result:

9

15

270

450

81000

135000

Swift 4

118

Self Property for Mutating Method

Mutating methods combined with 'self' property assigns a new instance to the defined

method.

struct area {

 var length = 1

 var breadth = 1

 func area() -> Int {

 return length * breadth

 }

 mutating func scaleBy(res: Int) {

 self.length *= res

 self.breadth *= res

 print(length)

 print(breadth)

 }

}

var val = area(length: 3, breadth: 5)

val.scaleBy(13)

When we run the above program using playground, we get the following result.

39

65

Type Methods

When a particular instance of a method is called, it is called as an Instance method; and

when the method calls a particular type of a method, it is called as 'Type Methods'. Type

methods for 'classes' are defined by the 'func' keyword and structures and enumerations
type methods are defined with the 'static' keyword before the 'func' keyword.

Type methods are called and accessed by '.' syntax where instead of calling a particular
instance the whole method is invoked.

class Math

{

 class func abs(number: Int) -> Int

 {

 if number < 0

Swift 4

119

 {

 return (-number)

 }

 else

 {

 return number

 }

 }

}

struct absno

{

 static func abs(number: Int) -> Int

 {

 if number < 0

 {

 return (-number)

 }

 else

 {

 return number

 }

 }

}

let no = Math.abs(-35)

let num = absno.abs(-5)

print(no)

print(num)

When we run the above program using playground, we get the following result.

35

5

Swift 4

120

Accessing the element members of a collection, sequence and a list in Classes, Structures

and Enumerations are carried out with the help of subscripts. These subscripts are used

to store and retrieve the values with the help of index. Array elements are accessed with

the help of someArray[index] and its subsequent member elements in a Dictionary
instance can be accessed as someDicitonary[key].

For a single type, subscripts can range from single to multiple declarations. We can use

the appropriate subscript to overload the type of index value passed to the subscript.

Subscripts also ranges from single dimension to multiple dimension according to the users
requirements for their input data type declarations.

Subscript Declaration Syntax and its Usage

Let's have a recap to the computed properties. Subscripts too follow the same syntax as

that of computed properties. For querying type instances, subscripts are written inside a

square bracket followed with the instance name. Subscript syntax follows the same syntax

structure as that of 'instance method' and 'computed property' syntax. 'subscript' keyword

is used for defining subscripts and the user can specify single or multiple parameters with

their return types. Subscripts can have read-write or read-only properties and the

instances are stored and retrieved with the help of 'getter' and 'setter' properties as that
of computed properties.

Syntax

subscript(index: Int) -> Int {

 get {

 // used for subscript value declarations

 }

 set(newValue) {

 // definitions are written here

 }

}

Example1

struct subexample {

 let decrementer: Int

 subscript(index: Int) -> Int {

 return decrementer / index

 }

}

let division = subexample(decrementer: 100)

25. Swift 4 – Subscripts

Swift 4

121

print("The number is divisible by \(division[9]) times")

print("The number is divisible by \(division[2]) times")

print("The number is divisible by \(division[3]) times")

print("The number is divisible by \(division[5]) times")

print("The number is divisible by \(division[7]) times")

When we run the above program using playground, we get the following result:

The number is divisible by 11 times

The number is divisible by 50 times

The number is divisible by 33 times

The number is divisible by 20 times

The number is divisible by 14 times

Example2

class daysofaweek {

 private var days = ["Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "saturday"]

 subscript(index: Int) -> String {

 get {

 return days[index]

 }

 set(newValue) {

 self.days[index] = newValue

 }

 }

}

var p = daysofaweek()

print(p[0])

print(p[1])

print(p[2])

print(p[3])

When we run the above program using playground, we get the following result:

Swift 4

122

Sunday

Monday

Tuesday

Wednesday

Options in Subscript

Subscripts takes single to multiple input parameters and these input parameters also

belong to any datatype. They can also use variable and variadic parameters. Subscripts

cannot provide default parameter values or use any in-out parameters.

Defining multiple subscripts are termed as 'subscript overloading' where a class or

structure can provide multiple subscript definitions as required. These multiple subscripts
are inferred based on the types of values that are declared within the subscript braces.

struct Matrix {

 let rows: Int, columns: Int

 var print: [Double]

 init(rows: Int, columns: Int) {

 self.rows = rows

 self.columns = columns

 print = Array(count: rows * columns, repeatedValue: 0.0)

 }

 subscript(row: Int, column: Int) -> Double {

 get {

 return print[(row * columns) + column]

 }

 set {

 print[(row * columns) + column] = newValue

 }

 }

}

var mat = Matrix(rows: 3, columns: 3)

mat[0,0] = 1.0

mat[0,1] = 2.0

mat[1,0] = 3.0

mat[1,1] = 5.0

print("\(mat[0,0])")

Swift 4

123

print("\(mat[0,1])")

print("\(mat[1,0])")

print("\(mat[1,1])")

When we run the above program using playground, we get the following result:

1.0

2.0

3.0

5.0

Swift 4 subscript supports single parameter to multiple parameter declarations for

appropriate data types. The program declares 'Matrix' structure as a 2 * 2 dimensional

array matrix to store 'Double' data types. The Matrix parameter is inputted with Integer
data types for declaring rows and columns.

New instance for the Matrix is created by passing row and column count to the initialize
as shown below.

var mat = Matrix(rows: 3, columns: 3)

Matrix values can be defined by passing row and column values into the subscript,
separated by a comma as shown below.

mat[0,0] = 1.0

mat[0,1] = 2.0

mat[1,0] = 3.0

mat[1,1] = 5.0

Swift 4

124

The ability to take than more form is defined as Inheritance. Generally a class can inherit

methods, properties and functionalities from another class. Classes can be further

categorized in to sub class and super class.

 Sub Class: when a class inherits properties, methods and functions from another

class it is called as sub class

 Super Class: Class containing properties, methods and functions to inherit other

classes from itself is called as a super class

Swift 4 classes contain superclass which calls and access methods, properties, functions

and overriding methods. Also, property observers are also used to add a property and
modify the stored or computed property methods.

Base Class

A Class that does not inherit methods, properties or functions from another class is called

as 'Base Class'.

class StudDetails {

 var stname: String!

 var mark1: Int!

 var mark2: Int!

 var mark3: Int!

 init(stname: String, mark1: Int, mark2: Int, mark3: Int) {

 self.stname = stname

 self.mark1 = mark1

 self.mark2 = mark2

 self.mark3 = mark3

 }

}

let stname = "Swift 4"

let mark1 = 98

let mark2 = 89

let mark3 = 76

print(stname)

print(mark1)

print(mark2)

26. Swift 4 – Inheritance

Swift 4

125

print(mark3)

When we run the above program using playground, we get the following result:

Swift 4

98

89

76

Class with classname StudDetails are defined as a base class here which is used to contain

students name, and three subjects mark as mark1, mark2 and mark3. 'let' keyword is

used to initialize the value for the base class and base class value is displayed in the
playground with the help of 'print' function.

Subclass

The act of basing a new class on an existing class is defined as 'Subclass'. The subclass

inherits the properties, methods and functions of its base class. To define a subclass ':' is

used before the base class name

class StudDetails

{

 var mark1: Int;

 var mark2: Int;

 init(stm1:Int, results stm2:Int)

 {

 mark1 = stm1;

 mark2 = stm2;

 }

 func print()

 {

 print("Mark1:\(mark1), Mark2:\(mark2)")

 }

}

class display : StudDetails

{

 init()

 {

 super.init(stm1: 93, results: 89)

Swift 4

126

 }

}

let marksobtained = display()

marksobtained.print()

When we run the above program using playground, we get the following result:

Mark1:93, Mark2:89

Class 'StudDetails' is defined as super class where student marks are declared and the

subclass 'display' is used to inherit the marks from its super class. Sub class defines
students marks and calls the print() method to display the students mark.

Overriding

Accessing the super class instance, type methods, instance, type properties and subscripts

subclass provides the concept of overriding. 'override' keyword is used to override the
methods declared in the superclass.

Access to Super class Methods, Properties and Subscripts

'super' keyword is used as a prefix to access the methods, properties and subscripts
declared in the super class.

Overriding Access to methods,properties and subscripts

Methods super.somemethod()

Properties super.someProperty()

Subscripts super[someIndex]

Methods Overriding

Inherited instance and type methods can be overridden by the 'override' keyword to our

methods defined in our subclass. Here print() is overridden in subclass to access the type

property mentioned in the super class print(). Also new instance of cricket() super class is
created as 'cricinstance'.

class cricket {

 func print() {

 print("Welcome to Swift 4 Super Class")

 }

}

class tennis: cricket {

 override func print() {

Swift 4

127

 print("Welcome to Swift 4 Sub Class")

 }

}

let cricinstance = cricket()

cricinstance.print()

let tennisinstance = tennis()

tennisinstance.print()

When we run the above program using playground, we get the following result:

Welcome to Swift 4 Super Class

Welcome to Swift 4 Sub Class

Property Overriding

You can override an inherited instance or class property to provide your own custom getter

and setter for that property, or to add property observers to enable the overriding property
to observe when the underlying property value changes.

Overriding Property Getters and Setters

Swift 4 allows the user to provide custom getter and setter to override the inherited

property whether it is a stored or computed property. The subclass does not know the

inherited property name and type. Therefore it is essential that the user needs to specify
in subclass, the name and type of the overriding property specified in super class.

This can be done in two ways:

 When setter is defined for overriding property the user has to define getter too.

 When we don't want to modify the inherited property getter, we can simply pass

the inherited value by the syntax 'super.someProperty' to the super class.

class Circle {

 var radius = 12.5

 var area: String {

 return "of rectangle for \(radius) "

 }

}

class Rectangle: Circle {

 var print = 7

Swift 4

128

 override var area: String {

 return super.area + " is now overridden as \(print)"

 }

}

let rect = Rectangle()

rect.radius = 25.0

rect.print = 3

print("Radius \(rect.area)")

When we run the above program using playground, we get the following result:

Radius of rectangle for 25.0 is now overridden as 3

Overriding Property Observers

When a new property needs to be added for an inherited property, 'property overriding'

concept is introduced in Swift 4. This notifies the user when the inherited property value

is altered. But overriding is not applicable for inherited constant stored properties and

inherited read-only computed properties.

class Circle {

 var radius = 12.5

 var area: String {

 return "of rectangle for \(radius) "

 }

}

class Rectangle: Circle {

 var print = 7

 override var area: String {

 return super.area + " is now overridden as \(print)"

 }

}

let rect = Rectangle()

rect.radius = 25.0

rect.print = 3

print("Radius \(rect.area)")

Swift 4

129

class Square: Rectangle {

 override var radius: Double {

 didSet {

 print = Int(radius/5.0)+1

 }

 }

}

let sq = Square()

sq.radius = 100.0

print("Radius \(sq.area)")

When we run the above program using playground, we get the following result:

Radius of rectangle for 25.0 is now overridden as 3

Radius of rectangle for 100.0 is now overridden as 21

Final Property to prevent Overriding

When the user need not want others to access super class methods, properties or

subscripts Swift 4 introduces 'final' property to prevent overriding. Once 'final' property is

declared the subscripts won't allow the super class methods, properties and its subscripts

to be overridden. There is no provision to have 'final' property in 'super class'. When 'final'
property is declared the user is restricted to create further sub classes.

final class Circle {

 final var radius = 12.5

 var area: String {

 return "of rectangle for \(radius) "

 }

}

class Rectangle: Circle {

 var print = 7

 override var area: String {

 return super.area + " is now overridden as \(print)"

 }

}

let rect = Rectangle()

Swift 4

130

rect.radius = 25.0

rect.print = 3

print("Radius \(rect.area)")

class Square: Rectangle {

 override var radius: Double {

 didSet {

 print = Int(radius/5.0)+1

 }

 }

}

let sq = Square()

sq.radius = 100.0

print("Radius \(sq.area)")

When we run the above program using playground, we get the following result:

<stdin>:14:18: error: var overrides a 'final' var

 override var area: String {

 ^

<stdin>:7:9: note: overridden declaration is here

 var area: String {

 ^

<stdin>:12:11: error: inheritance from a final class 'Circle'

 class Rectangle: Circle {

 ^

<stdin>:25:14: error: var overrides a 'final' var

override var radius: Double {

 ^

<stdin>:6:14: note: overridden declaration is here

 final var radius = 12.5

Since the super class is declared as 'final' and its data types are also declared as 'final' the
program won't allow to create subclasses further and it will throw errors.

Swift 4

131

Classes, structures and enumerations once declared in Swift 4 are initialized for preparing

instance of a class. Initial value is initialized for stored property and also for new instances

too the values are initialized to proceed further. The keyword to create initialization

function is carried out by 'init()' method. Swift 4 initializer differs from Objective-C that it

does not return any values. Its function is to check for initialization of newly created

instances before its processing. Swift 4 also provides 'deinitialization' process for

performing memory management operations once the instances are deallocated.

Initializer Role for Stored Properties

Stored property have to initialize the instances for its classes and structures before

processing the instances. Stored properties use initializer to assign and initialize values

thereby eradicating the need to call property observers. Initializer is used in stored

property

 To create an initial value.

 To assign default property value within the property definition.

 To initialize an instance for a particular data type 'init()' is used. No arguments

are passed inside the init() function.

Syntax

init()

{

 //New Instance initialization goes here

}

Example

struct rectangle {

 var length: Double

 var breadth: Double

 init() {

 length = 6

 breadth = 12

 }

}

var area = rectangle()

print("area of rectangle is \(area.length*area.breadth)")

27. Swift 4 – Initialization

Swift 4

132

When we run the above program using playground, we get the following result:

area of rectangle is 72.0

Here the structure 'rectangle' is initialized with members length and breadth as 'Double'

datatypes. Init() method is used to initialize the values for the newly created members

length and double. Area of rectangle is calculated and returned by calling the rectangle
function.

Setting Property Values by Default

Swift 4 language provides Init() function to initialize the stored property values. Also, the

user has provision to initialize the property values by default while declaring the class or

structure members. When the property takes the same value alone throughout the

program we can declare it in the declaration section alone rather than initializing it in init().

Setting property values by default enables the user when inheritance is defined for classes
or structures.

struct rectangle {

 var length = 6

 var breadth = 12

}

var area = rectangle()

print("area of rectangle is \(area.length*area.breadth)")

When we run the above program using playground, we get the following result:

area of rectangle is 72.0

Here instead of declaring length and breadth in init() the values are initialized in

declaration itself.

Parameters Initialization

In Swift 4 language the user has the provision to initialize parameters as part of the
initializer's definition using init().

struct Rectangle {

 var length: Double

 var breadth: Double

 var area: Double

 init(fromLength length: Double, fromBreadth breadth: Double) {

 self.length = length

 self.breadth = breadth

 area = length * breadth

Swift 4

133

 }

 init(fromLeng leng: Double, fromBread bread: Double) {

 self.length = leng

 self.breadth = bread

 area = leng * bread

 }

}

let ar = Rectangle(fromLength: 6, fromBreadth: 12)

print("area is: \(ar.area)")

let are = Rectangle(fromLeng: 36, fromBread: 12)

print("area is: \(are.area)")

When we run the above program using playground, we get the following result:

area is: 72.0

area is: 432.0

Local & External Parameters

Initialization parameters have both local and global parameter names similar to that of

function and method parameters. Local parameter declaration is used to access within the

initialize body and external parameter declaration is used to call the initializer. Swift 4

initializers differ from function and method initializer that they do not identify which
initializer are used to call which functions.

To overcome this, Swift 4 introduces an automatic external name for each and every

parameter in init(). This automatic external name is as equivalent as local name written
before every initialization parameter.

struct Days {

 let sunday, monday, tuesday: Int

 init(sunday: Int, monday: Int, tuesday: Int) {

 self.sunday = sunday

 self.monday = monday

 self.tuesday = tuesday

 }

 init(daysofaweek: Int) {

 sunday = daysofaweek

Swift 4

134

 monday = daysofaweek

 tuesday = daysofaweek

 }

}

let week = Days(sunday: 1, monday: 2, tuesday: 3)

print("Days of a Week is: \(week.sunday)")

print("Days of a Week is: \(week.monday)")

print("Days of a Week is: \(week.tuesday)")

let weekdays = Days(daysofaweek: 4)

print("Days of a Week is: \(weekdays.sunday)")

print("Days of a Week is: \(weekdays.monday)")

print("Days of a Week is: \(weekdays.tuesday)")

When we run the above program using playground, we get the following result:

Days of a Week is: 1

Days of a Week is: 2

Days of a Week is: 3

Days of a Week is: 4

Days of a Week is: 4

Days of a Week is: 4

Parameters without External Names

When an external name is not needed for an initialize underscore '_' is used to override
the default behavior.

struct Rectangle {

 var length: Double

 init(frombreadth breadth: Double) {

 length = breadth * 10

 }

 init(frombre bre: Double) {

 length = bre * 30

 }

Swift 4

135

 init(_ area: Double) {

 length = area

 }

}

let rectarea = Rectangle(180.0)

print("area is: \(rectarea.length)")

let rearea = Rectangle(370.0)

print("area is: \(rearea.length)")

let recarea = Rectangle(110.0)

print("area is: \(recarea.length)")

When we run the above program using playground, we get the following result:

area is: 180.0

area is: 370.0

area is: 110.0

Optional Property Types

When the stored property at some instance does not return any value that property is

declared with an 'optional' type indicating that 'no value' is returned for that particular

type. When the stored property is declared as 'optional' it automatically initializes the value
to be 'nil' during initialization itself.

struct Rectangle {

 var length: Double?

 init(frombreadth breadth: Double) {

 length = breadth * 10

 }

 init(frombre bre: Double) {

 length = bre * 30

 }

 init(_ area: Double) {

 length = area

Swift 4

136

 }

}

let rectarea = Rectangle(180.0)

print("area is: \(rectarea.length)")

let rearea = Rectangle(370.0)

print("area is: \(rearea.length)")

let recarea = Rectangle(110.0)

print("area is: \(recarea.length)")

When we run the above program using playground, we get the following result:

area is: Optional(180.0)

area is: Optional(370.0)

area is: Optional(110.0)

Modifying Constant Properties During Initialization

Initialization also allows the user to modify the value of constant property too. During

initialization, class property allows its class instances to be modified by the super class

and not by the subclass. Consider for example in the previous program 'length' is declared

as 'variable' in the main class. The below program variable 'length' is modified as 'constant'
variable.

struct Rectangle {

 let length: Double?

 init(frombreadth breadth: Double) {

 length = breadth * 10

 }

 init(frombre bre: Double) {

 length = bre * 30

 }

 init(_ area: Double) {

 length = area

 }

Swift 4

137

}

let rectarea = Rectangle(180.0)

print("area is: \(rectarea.length)")

let rearea = Rectangle(370.0)

print("area is: \(rearea.length)")

let recarea = Rectangle(110.0)

print("area is: \(recarea.length)")

When we run the above program using playground, we get the following result:

area is: Optional(180.0)

area is: Optional(370.0)

area is: Optional(110.0)

Default Initializers

Default initializers provide a new instance to all its declared properties of base class or
structure with default values.

class defaultexample {

 var studname: String?

 var stmark = 98

 var pass = true

}

var result = defaultexample()

print("result is: \(result.studname)")

print("result is: \(result.stmark)")

print("result is: \(result.pass)")

When we run above program using playground, we get following result.

result is: nil

result is: 98

result is: true

The above program is defined with class name as 'defaultexample'. Three member

functions are initialized by default as 'studname?' to store 'nil' values, 'stmark' as 98 and

Swift 4

138

'pass' as Boolean value 'true'. Likewise the member values in the class can be initialized
as default before processing the class member types.

Memberwise Initializers for Structure Types

When the custom initializers are not provided by the user, Structure types in Swift 4 will

automatically receive the 'memberwise initializer'. Its main function is to initialize the new

structure instances with the default memberwise initialize and then the new instance
properties are passed to the memberwise initialize by name.

struct Rectangle {

 var length = 100.0, breadth = 200.0

}

let area = Rectangle(length: 24.0, breadth: 32.0)

print("Area of rectangle is: \(area.length)")

print("Area of rectangle is: \(area.breadth)")

When we run the above program using playground, we get the following result:

Area of rectangle is: 24.0

Area of rectangle is: 32.0

Structures are initialized by default for their membership functions during initialization for

'length' as '100.0' and 'breadth' as '200.0'. But the values are overridden during the
processing of variables length and breadth as 24.0 and 32.0.

Initializer Delegation for Value Types

Initializer Delegation is defined as calling initializers from other initializers. Its main

function is to act as reusability to avoid code duplication across multiple initializers.

struct Stmark {

 var mark1 = 0.0, mark2 = 0.0

}

struct stdb {

 var m1 = 0.0, m2 = 0.0

}

struct block {

 var average = stdb()

 var result = Stmark()

 init() {}

 init(average: stdb, result: Stmark) {

Swift 4

139

 self.average = average

 self.result = result

 }

 init(avg: stdb, result: Stmark) {

 let tot = avg.m1 - (result.mark1 / 2)

 let tot1 = avg.m2 - (result.mark2 / 2)

 self.init(average: stdb(m1: tot, m2: tot1), result: result)

 }

}

let set1 = block()

print("student result is: \(set1.average.m1, set1.average.m2)
\(set1.result.mark1, set1.result.mark2)")

let set2 = block(average: stdb(m1: 2.0, m2: 2.0),

 result: Stmark(mark1: 5.0, mark2: 5.0))

print("student result is: \(set2.average.m1, set2.average.m2)
\(set2.result.mark1, set2.result.mark2)")

let set3 = block(avg: stdb(m1: 4.0, m2: 4.0),

 result: Stmark(mark1: 3.0, mark2: 3.0))

print("student result is: \(set3.average.m1, set3.average.m2)
\(set3.result.mark1, set3.result.mark2)")

When we run the above program using playground, we get the following result:

(0.0,0.0) (0.0,0.0)

(2.0,2.0) 5.0,5.0)

(2.5,2.5) (3.0,3.0)

Rules for Initializer Delegation

Value Types Class Types

Inheritance is not supported for value

types like structures and

enumerations. Referring other

initializers is done through self.init

Inheritance is supported. Checks all stored
property values are initialized

Swift 4

140

Class Inheritance and Initialization

Class types have two kinds of initializers to check whether defined stored properties

receive an initial value namely designated initializers and convenience initializers.

Designated Initializers and Convenience Initializers

Designated Initializer Convenience Initializer

Considered as primary initializes for a

class
Considered as supporting initialize for a class

All class properties are initialized and

appropriate superclass initializer are
called for further initialization

Designated initializer is called with

convenience initializer to create class

instance for a specific use case or input

value type

At least one designated initializer is

defined for every class

No need to have convenience initializers

compulsory defined when the class does not
require initializers.

Init(parameters) { statements } convenience init(parameters) { statements }

Program for Designated Initializers

class mainClass {

 var no1 : Int // local storage

 init(no1 : Int) {

 self.no1 = no1 // initialization

 }

}

class subClass : mainClass {

 var no2 : Int // new subclass storage

 init(no1 : Int, no2 : Int) {

 self.no2 = no2 // initialization

 super.init(no1:no1) // redirect to superclass

 }

}

let res = mainClass(no1: 10)

let print = subClass(no1: 10, no2: 20)

print("res is: \(res.no1)")

print("res is: \(print.no1)")

print("res is: \(print.no2)")

Swift 4

141

When we run the above program using playground, we get the following result:

res is: 10

res is: 10

res is: 20

Program for Convenience Initializers

class mainClass {

 var no1 : Int // local storage

 init(no1 : Int) {

 self.no1 = no1 // initialization

 }

}

class subClass : mainClass {

 var no2 : Int

 init(no1 : Int, no2 : Int) {

 self.no2 = no2

 super.init(no1:no1)

 }

 // Requires only one parameter for convenient method

 override convenience init(no1: Int) {

 self.init(no1:no1, no2:0)

 }

}

let res = mainClass(no1: 20)

let print = subClass(no1: 30, no2: 50)

print("res is: \(res.no1)")

print("res is: \(print.no1)")

print("res is: \(print.no2)")

When we run the above program using playground, we get the following result:

res is: 20

res is: 30

res is: 50

Swift 4

142

Initializer Inheritance and Overriding

Swift 4 does not allow its subclasses to inherit its superclass initializers for their member

types by default. Inheritance is applicable to Super class initializers only to some extent
which will be discussed in Automatic Initializer Inheritance.

When the user needs to have initializers defined in super class, subclass with initializers

has to be defined by the user as custom implementation. When overriding has to be taken

place by the sub class to the super class 'override' keyword has to be declared.

class sides {

 var corners = 4

 var description: String {

 return "\(corners) sides"

 }

}

let rectangle = sides()

print("Rectangle: \(rectangle.description)")

class pentagon: sides {

 override init() {

 super.init()

 corners = 5

 }

}

let bicycle = pentagon()

print("Pentagon: \(bicycle.description)")

When we run the above program using playground, we get the following result:

Rectangle: 4 sides

Pentagon: 5 sides

Designated and Convenience Initializers in Action

class Planet {

 var name: String

 init(name: String) {

 self.name = name

 }

Swift 4

143

 convenience init() {

 self.init(name: "[No Planets]")

 }

}

let plName = Planet(name: "Mercury")

print("Planet name is: \(plName.name)")

let noplName = Planet()

print("No Planets like that: \(noplName.name)")

class planets: Planet {

 var count: Int

 init(name: String, count: Int) {

 self.count = count

 super.init(name: name)

 }

 override convenience init(name: String) {

 self.init(name: name, count: 1)

 }

}

When we run the above program using playground, we get the following result:

Planet name is: Mercury

No Planets like that: [No Planets]

Failable Initializer

The user has to be notified when there are any initializer failures while defining a class,

structure or enumeration values. Initialization of variables sometimes become a failure
one due to:

 Invalid parameter values.

 Absence of required external source.

 Condition preventing initialization from succeeding.

To catch exceptions thrown by initialization method, Swift 4 produces a flexible initialize

called 'failable initializer' to notify the user that something is left unnoticed while initializing

the structure, class or enumeration members. Keyword to catch the failable initializer is

Swift 4

144

'init?'. Also, failable and non failable initializers cannot be defined with same parameter
types and names.

struct studrecord {

 let stname: String

 init?(stname: String) {

 if stname.isEmpty {return nil }

 self.stname = stname

 }

}

let stmark = studrecord(stname: "Swing")

if let name = stmark {

 print("Student name is specified")

}

let blankname = studrecord(stname: "")

if blankname == nil {

 print("Student name is left blank")

}

When we run the above program using playground, we get the following result:

Student name is specified

Student name is left blank

Failable Initializers for Enumerations

Swift 4 language provides the flexibility to have Failable initializers for enumerations too
to notify the user when the enumeration members are left from initializing values.

enum functions {

 case a, b, c, d

 init?(funct: String) {

 switch funct {

 case "one":

 self = .a

 case "two":

 self = .b

 case "three":

Swift 4

145

 self = .c

 case "four":

 self = .d

 default:

 return nil

 }

 }

}

let result = functions(funct: "two")

if result != nil {

 print("With In Block Two")

}

let badresult = functions(funct: "five")

if badresult == nil {

 print("Block Does Not Exist")

}

When we run the above program using playground, we get the following result:

With In Block Two

Block Does Not Exist

Failable Initializers for Classes

A failable initializer when declared with enumerations and structures alerts an initialization

failure at any circumstance within its implementation. However, failable initializer in

classes will alert the failure only after the stored properties have been set to an initial
value.

class studrecord {

 let studname: String!

 init?(studname: String) {

 self.studname = studname

 if studname.isEmpty { return nil }

 }

}

if let stname = studrecord(studname: "Failable Initializers") {

 print("Module is \(stname.studname)")

Swift 4

146

}

When we run the above program using playground, we get the following result:

Module is Failable Initializers

Overriding a Failable Initializer

Like that of initialize the user also has the provision to override a superclass failable

initializer inside the sub class. Super class failable initialize can also be overridden with in
a sub class non-failable initializer.

Subclass initializer cannot delegate up to the superclass initializer when overriding a
failable superclass initializer with a non-failable subclass initialize.

A non-failable initializer can never delegate to a failable initializer.

The program given below describes the failable and non-failable initializers.

class Planet {

 var name: String

 init(name: String) {

 self.name = name

 }

 convenience init() {

 self.init(name: "[No Planets]")

 }

}

let plName = Planet(name: "Mercury")

print("Planet name is: \(plName.name)")

let noplName = Planet()

print("No Planets like that: \(noplName.name)")

class planets: Planet {

 var count: Int

 init(name: String, count: Int) {

 self.count = count

 super.init(name: name)

 }

Swift 4

147

 override convenience init(name: String) {

 self.init(name: name, count: 1)

 }

}

When we run the above program using playground, we get the following result:

Planet name is: Mercury

No Planets like that: [No Planets]

The init! Failable Initializer

Swift 4 provides 'init?' to define an optional instance failable initializer. To define an
implicitly unwrapped optional instance of the specific type 'init!' is specified.

struct studrecord {

 let stname: String

 init!(stname: String) {

 if stname.isEmpty {return nil }

 self.stname = stname

 }

}

let stmark = studrecord(stname: "Swing")

if let name = stmark {

 print("Student name is specified")

}

let blankname = studrecord(stname: "")

if blankname == nil {

 print("Student name is left blank")

}

When we run the above program using playground, we get the following result:

Student name is specified

Swift 4

148

Student name is left blank

Required Initializers

To declare each and every subclass of the initialize 'required' keyword needs to be defined

before the init() function.

class classA {

 required init() {

 var a = 10

 print(a)

 }

}

class classB: classA {

 required init() {

 var b = 30

 print(b)

 }

}

let res = classA()

let print = classB()

When we run the above program using playground, we get the following result:

10

30

10

Swift 4

149

Before a class instance needs to be deallocated 'deinitializer' has to be called to deallocate

the memory space. The keyword 'deinit' is used to deallocate the memory spaces occupied

by the system resources. Deinitialization is available only on class types.

Deinitialization to Deallocate Memory Space

Swift 4 automatically deallocates your instances when they are no longer needed, to free

up resources. Swift 4 handles the memory management of instances through automatic

reference counting (ARC), as described in Automatic Reference Counting. Typically you

don't need to perform manual clean-up when your instances are deallocated. However,

when you are working with your own resources, you might need to perform some

additional clean-up yourself. For example, if you create a custom class to open a file and

write some data to it, you might need to close the file before the class instance is

deallocated.

var counter = 0; // for reference counting

class baseclass {

 init() {

 counter++;

 }

 deinit {

 counter--;

 }

}

var print: baseclass? = baseclass()

print(counter)

print = nil

print(counter)

When we run the above program using playground, we get the following result:

1

0

When print = nil statement is omitted the values of the counter retains the same since it

is not deinitialized.

28. Swift 4 – Deinitialization

Swift 4

150

var counter = 0; // for reference counting

class baseclass {

 init() {

 counter++;

 }

 deinit {

 counter--;

 }

}

var print: baseclass? = baseclass()

print(counter)

print(counter)

When we run the above program using playground, we get the following result:

1

1

Swift 4

151

Memory management functions and its usage are handled in Swift 4 language through

Automatic reference counting (ARC). ARC is used to initialize and deinitialize the system

resources thereby releasing memory spaces used by the class instances when the

instances are no longer needed. ARC keeps track of information about the relationships
between our code instances to manage the memory resources effectively.

Functions of ARC

 ARC allocates a chunk of memory to store the information each and every time

when a new class instance is created by init().

 Information about the instance type and its values are stored in memory.

 When the class instance is no longer needed it automatically frees the memory

space by deinit() for further class instance storage and retrieval.

 ARC keeps in track of currently referring class instances properties, constants and

variables so that deinit() is applied only to those unused instances.

 ARC maintains a 'strong reference' to those class instance property, constants and

variables to restrict deallocation when the class instance is currently in use.

ARC Program

class StudDetails {

 var stname: String!

 var mark: Int!

 init(stname: String, mark: Int) {

 self.stname = stname

 self.mark = mark

 }

 deinit {

 print("Deinitialized \(self.stname)")

 print("Deinitialized \(self.mark)")

 }

}

let stname = "Swift 4"

let mark = 98

29. Swift 4 – ARC Overview

Swift 4

152

print(stname)

print(mark)

When we run the above program using playground, we get the following result:

Swift 4

98

ARC Strong Reference Cycles Class Instances

class studmarks {

 let name: String

 var stud: student?

 init (name: String) {

 print("Initializing: \(name)")

 self.name = name

 }

 deinit {

 print("Deallocating: \(self.name)")

 }

}

class student {

 let name: String

 var strname: studmarks?

 init (name: String) {

 print("Initializing: \(name)")

 self.name = name

 }

 deinit {

 print("Deallocating: \(self.name)")

 }

}

Swift 4

153

var shiba: studmarks?

var mari: student?

shiba = studmarks(name: "Swift 4")

mari = student(name: "ARC")

shiba!.stud = mari

mari!.strname = shiba

When we run the above program using playground, we get the following result:

Initializing: Swift 4

Initializing: ARC

ARC Weak and Unowned References

Class type properties has two ways to resolve strong reference cycles:

 Weak References

 Unowned References

These references are used to enable one instance to refer other instances in a reference

cycle. Then the instances may refer to each and every instances instead of caring about

strong reference cycle. When the user knows that some instance may return 'nil' values

we may point that using weak reference. When the instance going to return something
rather than nil then declare it with unowned reference.

Weak Reference Program

class module {

 let name: String

 init(name: String) { self.name = name }

 var sub: submodule?

 deinit { print("\(name) Is The Main Module") }

}

class submodule {

 let number: Int

 init(number: Int) { self.number = number }

Swift 4

154

 weak var topic: module?

 deinit { print("Sub Module with its topic number is \(number)") }

}

var toc: module?

var list: submodule?

toc = module(name: "ARC")

list = submodule(number: 4)

toc!.sub = list

list!.topic = toc

toc = nil

list = nil

When we run the above program using playground, we get the following result:

ARC Is The Main Module

Sub Module with its topic number is 4

Unowned Reference Program

class student {

 let name: String

 var section: marks?

 init(name: String) {

 self.name = name

 }

 deinit { print("\(name)") }

}

class marks {

 let marks: Int

 unowned let stname: student

 init(marks: Int, stname: student) {

 self.marks = marks

 self.stname = stname

Swift 4

155

 }

 deinit { print("Marks Obtained by the student is \(marks)") }

}

var module: student?

module = student(name: "ARC")

module!.section = marks(marks: 98, stname: module!)

module = nil

When we run the above program using playground, we get the following result:

ARC

Marks Obtained by the student is 98

Strong Reference Cycles for Closures

When we assign a closure to the class instance property and to the body of the closure to

capture particular instance strong reference cycle can occur. Strong reference to the

closure is defined by 'self.someProperty' or 'self.someMethod()'. Strong reference cycles
are used as reference types for the closures.

class HTMLElement {

 let samplename: String

 let text: String?

 lazy var asHTML: () -> String = {

 if let text = self.text {

 return "<\(self.samplename)>\(text)</\(self.samplename)>"

 } else {

 return "<\(self.samplename) />"

 }

 }

 init(samplename: String, text: String? = nil) {

 self.samplename = samplename

 self.text = text

 }

 deinit {

Swift 4

156

 print("\(samplename) is being deinitialized")

 }

}

var paragraph: HTMLElement? = HTMLElement(samplename: "p", text: "Welcome to
Closure SRC")

print(paragraph!.asHTML())

When we run the above program using playground, we get the following result:

<p>Welcome to Closure SRC</p>

Weak and Unowned References

When the closure and the instance refer to each other the user may define the capture in

a closure as an unowned reference. Then it would not allow the user to deallocate the

instance at the same time. When the instance sometime return a 'nil' value define the

closure with the weak instance.

class HTMLElement {

 let module: String

 let text: String?

 lazy var asHTML: () -> String = {

 [unowned self] in

 if let text = self.text {

 return "<\(self.module)>\(text)</\(self.module)>"

 } else {

 return "<\(self.module) />"

 }

 }

 init(module: String, text: String? = nil) {

 self.module = module

 self.text = text

 }

 deinit {

 print("\(module) the deinit()")

 }

Swift 4

157

}

var paragraph: HTMLElement? = HTMLElement(module: "Inside", text: "ARC Weak
References")

print(paragraph!.asHTML())

paragraph = nil

When we run the above program using playground, we get the following result:

<Inside>ARC Weak References</Inside>

Inside the deinit()

Swift 4

158

The process of querying, calling properties, subscripts and methods on an optional that
may be 'nil' is defined as optional chaining. Optional chaining return two values:

 if the optional contains a 'value' then calling its related property, methods and

subscripts returns values

 if the optional contains a 'nil' value all its its related property, methods and

subscripts returns nil

Since multiple queries to methods, properties and subscripts are grouped together failure

to one chain will affect the entire chain and results in 'nil' value.

Optional Chaining as an Alternative to Forced Unwrapping

Optional chaining is specified after the optional value with '?' to call a property, method or
subscript when the optional value returns some values.

Optional Chaining '?'

Access to methods,properties and

subscriptsOptional Chaining '!' to force
Unwrapping

? is placed after the optional value to
call property, method or subscript

! is placed after the optional value to call

property, method or subscript to force
unwrapping of value

Fails gracefully when the optional is
'nil'

Forced unwrapping triggers a run time error
when the optional is 'nil'

Program for Optional Chaining with '!'

class ElectionPoll {

 var candidate: Pollbooth?

}

class Pollbooth {

 var name = "MP"

}

let cand = ElectionPoll()

let candname = cand.candidate!.name

30. Swift 4 – Optional Chaining

Swift 4

159

When we run the above program using playground, we get the following result:

fatal error: unexpectedly found nil while unwrapping an Optional value

0 Swift 4 0x0000000103410b68
llvm::sys::PrintStackTrace(__sFILE*) + 40

1 Swift 4 0x0000000103411054 SignalHandler(int) + 452

2 libsystem_platform.dylib 0x00007fff9176af1a _sigtramp + 26

3 libsystem_platform.dylib 0x000000000000000b _sigtramp + 1854492939

4 libsystem_platform.dylib 0x00000001074a0214 _sigtramp + 1976783636

5 Swift 4 0x0000000102a85c39
llvm::JIT::runFunction(llvm::Function*, std::__1::vector > const&) + 329

6 Swift 4 0x0000000102d320b3
llvm::ExecutionEngine::runFunctionAsMain(llvm::Function*,
std::__1::vector<std::__1::basic_string, std::__1::allocator >,
std::__1::allocator<std::__1::basic_string, std::__1::allocator > > > const&,
char const* const*) + 1523

7 Swift 4 0x000000010296e6ba Swift 4::RunImmediately(Swift
4::CompilerInstance&, std::__1::vector<std::__1::basic_string,
std::__1::allocator >, std::__1::allocator<std::__1::basic_string,
std::__1::allocator > > > const&, Swift 4::IRGenOptions&, Swift 4::SILOptions
const&) + 1066

8 Swift 4 0x000000010275764b frontend_main(llvm::ArrayRef,
char const*, void*) + 5275

9 Swift 4 0x0000000102754a6d main + 1677

10 libdyld.dylib 0x00007fff8bb9e5c9 start + 1

11 libdyld.dylib 0x000000000000000c start + 1950751300

Stack dump:

0. Program arguments:
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/
usr/bin/Swift 4 -frontend -interpret - -target x86_64-apple-darwin14.0.0 -
target-cpu core2 -sdk
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/
SDKs/MacOSX10.10.sdk -module-name main

/bin/sh: line 47: 15672 Done cat <<'SWIFT 4'

import Foundation

</std::__1::basic_string</std::__1::basic_string</std::__1::basic_string</std::
__1::basic_string

The above program declares 'election poll' as class name and contains 'candidate' as

membership function. The subclass is declared as 'poll booth' and 'name' as its

membership function which is initialized as 'MP'. The call to the super class is initialized by

creating an instance 'cand' with optional '!'. Since the values are not declared in its base

class, 'nil' value is stored thereby returning a fatal error by the force unwrapping
procedure.

Swift 4

160

Program for Optional Chaining with '?'

class ElectionPoll {

 var candidate: Pollbooth?

}

class Pollbooth {

 var name = "MP"

}

let cand = ElectionPoll()

if let candname = cand.candidate?.name {

 print("Candidate name is \(candname)")

}

else {

 print("Candidate name cannot be retreived")

}

When we run the above program using playground, we get the following result:

Candidate name cannot be retreived

The program above declares 'election poll' as class name and contains 'candidate' as

membership function. The subclass is declared as 'poll booth' and 'name' as its

membership function which is initialized as 'MP'. The call to the super class is initialized by

creating an instance 'cand' with optional '?'. Since the values are not declared in its base
class 'nil' value is stored and printed in the console by the else handler block.

Defining Model Classes for Optional Chaining & Accessing Properties

Swift 4 language also provides the concept of optional chaining, to declare more than one

subclasses as model classes. This concept will be very useful to define complex models
and to access the properties, methods and subscripts sub properties.

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

Swift 4

161

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("The number of rooms is \(cprint)")

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var street: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let rectname = rectangle()

Swift 4

162

if let rectarea = rectname.print?.cprint {

 print("Area of rectangle is \(rectarea)")

} else {

 print("Rectangle Area is not specified")

}

When we run the above program using playground, we get the following result:

Rectangle Area is not specified

Calling Methods Through Optional Chaining

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("Area of Circle is: \(cprint)")

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

Swift 4

163

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let circname = rectangle()

if circname.print?.circleprint() != nil {

 print("Area of circle is specified)")

} else {

 print("Area of circle is not specified")

}

When we run the above program using playground, we get the following result:

Area of circle is not specified

The function circleprint() declared inside the circle() sub class is called by creating an

instance named 'circname'. The function will return a value if it contains some value

otherwise it will return some user defined print message by checking the statement 'if
circname.print?.circleprint() != nil'.

Accessing Subscripts through Optional Chaining

Optional chaining is used to set and retrieve a subscript value to validate whether call to

that subscript returns a value. '?' is placed before the subscript braces to access the
optional value on the particular subscript.

Swift 4

164

Program 1

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("The number of rooms is \(cprint)")

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

Swift 4

165

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let circname = rectangle()

if let radiusName = circname.print?[0].radiusname {

 print("The first room name is \(radiusName).")

} else {

 print("Radius is not specified.")

}

When we run the above program using playground, we get the following result:

Radius is not specified.

In the above program the instance values for the membership function 'radiusName' is not

specified. Hence program call to the function will return only else part whereas to return
the values we have to define the values for the particular membership function.

Program 2

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

Swift 4

166

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("The number of rooms is \(cprint)")

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let circname = rectangle()

circname.print?[0] = radius(radiusname: "Diameter")

let printing = circle()

Swift 4

167

printing.area.append(radius(radiusname: "Units"))

printing.area.append(radius(radiusname: "Meter"))

circname.print = printing

if let radiusName = circname.print?[0].radiusname {

 print("Radius is measured in \(radiusName).")

} else {

 print("Radius is not specified.")

}

When we run the above program using playground, we get the following result:

Radius is measured in Units.

In the above program, the instance values for the membership function 'radiusName' is
specified. Hence program call to the function will now return values.

Accessing Subscripts of Optional Type

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("The number of rooms is \(cprint)")

Swift 4

168

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let circname = rectangle()

circname.print?[0] = radius(radiusname: "Diameter")

let printing = circle()

printing.area.append(radius(radiusname: "Units"))

printing.area.append(radius(radiusname: "Meter"))

circname.print = printing

var area = ["Radius": [35, 45, 78, 101], "Circle": [90, 45, 56]]

area["Radius"]?[1] = 78

area["Circle"]?[1]--

Swift 4

169

print(area["Radius"]?[0])

print(area["Radius"]?[1])

print(area["Radius"]?[2])

print(area["Radius"]?[3])

print(area["Circle"]?[0])

print(area["Circle"]?[1])

print(area["Circle"]?[2])

When we run the above program using playground, we get the following result:

Optional(35)

Optional(78)

Optional(78)

Optional(101)

Optional(90)

Optional(44)

Optional(56)

The optional values for subscripts can be accessed by referring their subscript values. It

can be accessed as subscript[0], subscript[1] etc. The default subscript values for 'radius'

are first assigned as [35, 45, 78, 101] and for 'Circle' [90, 45, 56]]. Then the subscript

values are changed as Radius[0] to 78 and Circle[1] to 45.

Linking Multiple Levels of Chaining

Multiple sub classes can also be linked with its super class methods, properties and
subscripts by optional chaining.

Multiple chaining of optional can be linked:

If retrieving type is not optional, optional chaining will return an optional value. For
example if String through optional chaining it will return String? Value

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

Swift 4

170

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("The number of rooms is \(cprint)")

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

Swift 4

171

let circname = rectangle()

if let radiusName = circname.print?[0].radiusname {

 print("The first room name is \(radiusName).")

} else {

 print("Radius is not specified.")

}

When we run the above program using playground, we get the following result:

Radius is not specified.

In the above program, the instance values for the membership function 'radiusName' is

not specified. Hence, the program call to the function will return only else part whereas to
return the values we have to define the values for the particular membership function.

If the retrieving type is already optional, then optional chaining will also return an optional

value. For example if String? Is accessed through optional chaining it will return String?

Value.

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("The number of rooms is \(cprint)")

 }

Swift 4

172

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let circname = rectangle()

circname.print?[0] = radius(radiusname: "Diameter")

let printing = circle()

printing.area.append(radius(radiusname: "Units"))

printing.area.append(radius(radiusname: "Meter"))

circname.print = printing

if let radiusName = circname.print?[0].radiusname {

 print("Radius is measured in \(radiusName).")

} else {

 print("Radius is not specified.")

}

Swift 4

173

When we run the above program using playground, we get the following result:

Radius is measured in Units.

In the above program, the instance values for the membership function 'radiusName' is

specified. Hence, the program call to the function will now return values.

Chaining on Methods with Optional Return Values

Optional chaining is used to access subclasses defined methods too.

class rectangle {

 var print: circle?

}

class circle {

 var area = [radius]()

 var cprint: Int {

 return area.count

 }

 subscript(i: Int) -> radius {

 get {

 return area[i]

 }

 set {

 area[i] = newValue

 }

 }

 func circleprint() {

 print("Area of Circle is: \(cprint)")

 }

 var rectarea: circumference?

}

class radius {

 let radiusname: String

 init(radiusname: String) { self.radiusname = radiusname }

}

Swift 4

174

class circumference {

 var circumName: String?

 var circumNumber: String?

 var circumarea: String?

 func buildingIdentifier() -> String? {

 if circumName != nil {

 return circumName

 } else if circumNumber != nil {

 return circumNumber

 } else {

 return nil

 }

 }

}

let circname = rectangle()

if circname.print?.circleprint() != nil {

 print("Area of circle is specified)")

} else {

 print("Area of circle is not specified")

}

When we run the above program using playground, we get the following result:

Area of circle is not specified

Swift 4

175

To validate the type of an instance 'Type Casting' comes into play in Swift 4 language. It

is used to check whether the instance type belongs to a particular super class or subclass

or it is defined in its own hierarchy.

Swift 4 type casting provides two operators 'is' to check the type of a value and 'as' and

to cast the type value to a different type. Type casting also checks whether the instance
type follows particular protocol conformance standard.

Defining a Class Hierarchy

Type casting is used to check the type of instances to find out whether it belongs to

particular class type. Also, it checks hierarchy of classes and its subclasses to check and
cast those instances to make it as a same hierarchy.

class Subjects {

 var physics: String

 init(physics: String) {

 self.physics = physics

 }

}

class Chemistry: Subjects {

 var equations: String

 init(physics: String, equations: String) {

 self.equations = equations

 super.init(physics: physics)

 }

}

class Maths: Subjects {

 var formulae: String

 init(physics: String, formulae: String) {

 self.formulae = formulae

 super.init(physics: physics)

 }

}

let sa = [

31. Swift 4 – Type Casting

Swift 4

176

 Chemistry(physics: "solid physics", equations: "Hertz"),

 Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz")]

let samplechem = Chemistry(physics: "solid physics", equations: "Hertz")

print("Instance physics is: \(samplechem.physics)")

print("Instance equation is: \(samplechem.equations)")

let samplemaths = Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz")

print("Instance physics is: \(samplemaths.physics)")

print("Instance formulae is: \(samplemaths.formulae)")

When we run the above program using playground, we get the following result:

Instance physics is: solid physics

Instance equation is: Hertz

Instance physics is: Fluid Dynamics

Instance formulae is: Giga Hertz

Type Checking

Type checking is done with the 'is' operator. The 'is' type check operator checks whether

the instance belongs to particular subclass type and returns 'true' if it belongs to that
instance else it will return 'false'.

class Subjects {

 var physics: String

 init(physics: String) {

 self.physics = physics

 }

}

class Chemistry: Subjects {

 var equations: String

 init(physics: String, equations: String) {

 self.equations = equations

 super.init(physics: physics)

 }

}

Swift 4

177

class Maths: Subjects {

 var formulae: String

 init(physics: String, formulae: String) {

 self.formulae = formulae

 super.init(physics: physics)

 }

}

let sa = [

 Chemistry(physics: "solid physics", equations: "Hertz"),

 Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz"),

 Chemistry(physics: "Thermo physics", equations: "Decibels"),

 Maths(physics: "Astro Physics", formulae: "MegaHertz"),

 Maths(physics: "Differential Equations", formulae: "Cosine Series")]

let samplechem = Chemistry(physics: "solid physics", equations: "Hertz")

print("Instance physics is: \(samplechem.physics)")

print("Instance equation is: \(samplechem.equations)")

let samplemaths = Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz")

print("Instance physics is: \(samplemaths.physics)")

print("Instance formulae is: \(samplemaths.formulae)")

var chemCount = 0

var mathsCount = 0

for item in sa {

 if item is Chemistry {

 ++chemCount

 } else if item is Maths {

 ++mathsCount

 }

}

Swift 4

178

print("Subjects in chemistry contains \(chemCount) topics and maths contains
\(mathsCount) topics")

When we run the above program using playground, we get the following result:

Instance physics is: solid physics

Instance equation is: Hertz

Instance physics is: Fluid Dynamics

Instance formulae is: Giga Hertz

Subjects in chemistry contains 2 topics and maths contains 3 topics

Downcasting

Downcasting the subclass type can be done with two operators (as? and as!).'as?' returns
an optional value when the value returns nil. It is used to check successful downcast.

'as!' returns force unwrapping as discussed in the optional chaining when the downcasting

returns nil value. It is used to trigger runtime error in case of downcast failure

class Subjects {

 var physics: String

 init(physics: String) {

 self.physics = physics

 }

}

class Chemistry: Subjects {

 var equations: String

 init(physics: String, equations: String) {

 self.equations = equations

 super.init(physics: physics)

 }

}

class Maths: Subjects {

 var formulae: String

 init(physics: String, formulae: String) {

 self.formulae = formulae

 super.init(physics: physics)

 }

}

Swift 4

179

let sa = [

 Chemistry(physics: "solid physics", equations: "Hertz"),

 Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz"),

 Chemistry(physics: "Thermo physics", equations: "Decibels"),

 Maths(physics: "Astro Physics", formulae: "MegaHertz"),

 Maths(physics: "Differential Equations", formulae: "Cosine Series")]

let samplechem = Chemistry(physics: "solid physics", equations: "Hertz")

print("Instance physics is: \(samplechem.physics)")

print("Instance equation is: \(samplechem.equations)")

let samplemaths = Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz")

print("Instance physics is: \(samplemaths.physics)")

print("Instance formulae is: \(samplemaths.formulae)")

var chemCount = 0

var mathsCount = 0

for item in sa {

 if let print = item as? Chemistry {

 print("Chemistry topics are: '\(print.physics)', \(print.equations)")

 } else if let example = item as? Maths {

 print("Maths topics are: '\(example.physics)', \(example.formulae)")

 }

}

When we run the above program using playground, we get the following result:

Instance physics is: solid physics

Instance equation is: Hertz

Instance physics is: Fluid Dynamics

Instance formulae is: Giga Hertz

Chemistry topics are: 'solid physics', Hertz

Maths topics are: 'Fluid Dynamics', Giga Hertz

Chemistry topics are: 'Thermo physics', Decibels

Swift 4

180

Maths topics are: 'Astro Physics', MegaHertz

Maths topics are: 'Differential Equations', Cosine Series

Typecasting:Any and Any Object

The keyword 'Any' is used to represent an instance which belongs to any type including
function types.

class Subjects {

 var physics: String

 init(physics: String) {

 self.physics = physics

 }

}

class Chemistry: Subjects {

 var equations: String

 init(physics: String, equations: String) {

 self.equations = equations

 super.init(physics: physics)

 }

}

class Maths: Subjects {

 var formulae: String

 init(physics: String, formulae: String) {

 self.formulae = formulae

 super.init(physics: physics)

 }

}

let sa = [

 Chemistry(physics: "solid physics", equations: "Hertz"),

 Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz"),

 Chemistry(physics: "Thermo physics", equations: "Decibels"),

 Maths(physics: "Astro Physics", formulae: "MegaHertz"),

 Maths(physics: "Differential Equations", formulae: "Cosine Series")]

Swift 4

181

let samplechem = Chemistry(physics: "solid physics", equations: "Hertz")

print("Instance physics is: \(samplechem.physics)")

print("Instance equation is: \(samplechem.equations)")

let samplemaths = Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz")

print("Instance physics is: \(samplemaths.physics)")

print("Instance formulae is: \(samplemaths.formulae)")

var chemCount = 0

var mathsCount = 0

for item in sa {

 if let print = item as? Chemistry {

 print("Chemistry topics are: '\(print.physics)', \(print.equations)")

 } else if let example = item as? Maths {

 print("Maths topics are: '\(example.physics)', \(example.formulae)")

 }

}

var exampleany = [Any]()

exampleany.append(12)

exampleany.append(3.14159)

exampleany.append("Example for Any")

exampleany.append(Chemistry(physics: "solid physics", equations: "Hertz"))

for print in exampleany {

 switch print {

 case let someInt as Int:

 print("Integer value is \(someInt)")

 case let someDouble as Double where someDouble > 0:

 print("Pi value is \(someDouble)")

 case let someString as String:

 print("\(someString)")

 case let phy as Chemistry:

Swift 4

182

 print("Topics '\(phy.physics)', \(phy.equations)")

 default:

 print("None")

 }

}

When we run the above program using playground, we get the following result:

Instance physics is: solid physics

Instance equation is: Hertz

Instance physics is: Fluid Dynamics

Instance formulae is: Giga Hertz

Chemistry topics are: 'solid physics', Hertz

Maths topics are: 'Fluid Dynamics', Giga Hertz

Chemistry topics are: 'Thermo physics', Decibels

Maths topics are: 'Astro Physics', MegaHertz

Maths topics are: 'Differential Equations', Cosine Series

Integer value is 12

Pi value is 3.14159

Example for Any

Topics 'solid physics', Hertz

AnyObject

To represent the instance of any class type, 'AnyObject' keyword is used.

class Subjects {

 var physics: String

 init(physics: String) {

 self.physics = physics

 }

}

class Chemistry: Subjects {

 var equations: String

 init(physics: String, equations: String) {

 self.equations = equations

 super.init(physics: physics)

 }

Swift 4

183

}

class Maths: Subjects {

 var formulae: String

 init(physics: String, formulae: String) {

 self.formulae = formulae

 super.init(physics: physics)

 }

}

let saprint: [AnyObject] = [Chemistry(physics: "solid physics", equations:
"Hertz"),

 Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz"),

 Chemistry(physics: "Thermo physics", equations: "Decibels"),

 Maths(physics: "Astro Physics", formulae: "MegaHertz"),

 Maths(physics: "Differential Equations", formulae: "Cosine Series")]

let samplechem = Chemistry(physics: "solid physics", equations: "Hertz")

print("Instance physics is: \(samplechem.physics)")

print("Instance equation is: \(samplechem.equations)")

let samplemaths = Maths(physics: "Fluid Dynamics", formulae: "Giga Hertz")

print("Instance physics is: \(samplemaths.physics)")

print("Instance formulae is: \(samplemaths.formulae)")

var chemCount = 0

var mathsCount = 0

for item in saprint {

 if let print = item as? Chemistry {

 print("Chemistry topics are: '\(print.physics)', \(print.equations)")

 } else if let example = item as? Maths {

 print("Maths topics are: '\(example.physics)', \(example.formulae)")

 }

}

var exampleany = [Any]()

Swift 4

184

exampleany.append(12)

exampleany.append(3.14159)

exampleany.append("Example for Any")

exampleany.append(Chemistry(physics: "solid physics", equations: "Hertz"))

for print in exampleany {

 switch print {

 case let someInt as Int:

 print("Integer value is \(someInt)")

 case let someDouble as Double where someDouble > 0:

 print("Pi value is \(someDouble)")

 case let someString as String:

 print("\(someString)")

 case let phy as Chemistry:

 print("Topics '\(phy.physics)', \(phy.equations)")

 default:

 print("None")

 }

}

When we run the above program using playground, we get the following result:

Instance physics is: solid physics

Instance equation is: Hertz

Instance physics is: Fluid Dynamics

Instance formulae is: Giga Hertz

Chemistry topics are: 'solid physics', Hertz

Maths topics are: 'Fluid Dynamics', Giga Hertz

Chemistry topics are: 'Thermo physics', Decibels

Maths topics are: 'Astro Physics', MegaHertz

Maths topics are: 'Differential Equations', Cosine Series

Integer value is 12

Pi value is 3.14159

Example for Any

Topics 'solid physics', Hertz

Swift 4

185

Functionality of an existing class, structure or enumeration type can be added with the

help of extensions. Type functionality can be added with extensions but overriding the

functionality is not possible with extensions.

Swift 4 Extension Functionalities:

 Adding computed properties and computed type properties

 Defining instance and type methods

 Providing new initializers

 Defining subscripts

 Defining and using new nested types

 Making an existing type conform to a protocol

Extensions are declared with the keyword 'extension'

Syntax

extension SomeType {

 // new functionality can be added here

}

Existing type can also be added with extensions to make it as a protocol standard and its
syntax is similar to that of classes or structures.

extension SomeType: SomeProtocol, AnotherProtocol {

 // protocol requirements is described here

}

Computed Properties

Computed 'instance' and 'type' properties can also be extended with the help of
extensions.

extension Int {

 var add: Int {return self + 100 }

 var sub: Int { return self - 10 }

 var mul: Int { return self * 10 }

 var div: Int { return self / 5 }

}

32. Swift 4 – Extensions

Swift 4

186

let addition = 3.add

print("Addition is \(addition)")

let subtraction = 120.sub

print("Subtraction is \(subtraction)")

let multiplication = 39.mul

print("Multiplication is \(multiplication)")

let division = 55.div

print("Division is \(division)")

let mix = 30.add + 34.sub

print("Mixed Type is \(mix)")

When we run the above program using playground, we get the following result:

Addition is 103

Subtraction is 110

Multiplication is 390

Division is 11

Mixed Type is 154

Initializers

Swift 4 provides the flexibility to add new initializers to an existing type by extensions.

The user can add their own custom types to extend the types already defined and

additional initialization options are also possible. Extensions supports only init(). deinit()
is not supported by the extensions.

struct sum {

 var num1 = 100, num2 = 200

}

struct diff {

 var no1 = 200, no2 = 100

}

struct mult {

Swift 4

187

 var a = sum()

 var b = diff()

}

let calc = mult()

print ("Inside mult block \(calc.a.num1, calc.a.num2)")

print("Inside mult block \(calc.b.no1, calc.b.no2)")

let memcalc = mult(a: sum(num1: 300, num2: 500),b: diff(no1: 300, no2: 100))

print("Inside mult block \(memcalc.a.num1, memcalc.a.num2)")

print("Inside mult block \(memcalc.b.no1, memcalc.b.no2)")

extension mult {

 init(x: sum, y: diff) {

 let X = x.num1 + x.num2

 let Y = y.no1 + y.no2

 }

}

let a = sum(num1: 100, num2: 200)

print("Inside Sum Block:\(a.num1, a.num2)")

let b = diff(no1: 200, no2: 100)

print("Inside Diff Block: \(b.no1, b.no2)")

When we run the above program using playground, we get the following result:

Inside mult block (100, 200)

Inside mult block (200, 100)

Inside mult block (300, 500)

Inside mult block (300, 100)

Inside Sum Block:(100, 200)

Inside Diff Block: (200, 100)

Swift 4

188

Methods

New instance methods and type methods can be added further to the subclass with the

help of extensions.

extension Int {

 func topics(summation: () -> ()) {

 for _ in 0..<self {

 summation()

 }

 }

}

4.topics({

 print("Inside Extensions Block")

})

3.topics({

 print("Inside Type Casting Block")

})

When we run the above program using playground, we get the following result:

Inside Extensions Block

Inside Extensions Block

Inside Extensions Block

Inside Extensions Block

Inside Type Casting Block

Inside Type Casting Block

Inside Type Casting Block

topics() function takes argument of type '(summation: () -> ())' to indicate the function

does not take any arguments and it won't return any values. To call that function multiple

number of times, for block is initialized and call to the method with topic() is initialized.

Mutating Instance Methods

Instance methods can also be mutated when declared as extensions.

Structure and enumeration methods that modify self or its properties must mark the
instance method as mutating, just like mutating methods from an original implementation.

extension Double {

 mutating func square() {

Swift 4

189

 let pi = 3.1415

 self = pi * self * self

 }

}

var Trial1 = 3.3

Trial1.square()

print("Area of circle is: \(Trial1)")

var Trial2 = 5.8

Trial2.square()

print("Area of circle is: \(Trial2)")

var Trial3 = 120.3

Trial3.square()

print("Area of circle is: \(Trial3)")

When we run the above program using playground, we get the following result:

Area of circle is: 34.210935

Area of circle is: 105.68006

Area of circle is: 45464.070735

Subscripts

Adding new subscripts to already declared instances can also be possible with extensions.

extension Int {

 subscript(var multtable: Int) -> Int {

 var no1 = 1

 while multtable > 0 {

 no1 *= 10

 --multtable

 }

 return (self / no1) % 10

 }

}

Swift 4

190

print(12[0])

print(7869[1])

print(786543[2])

When we run the above program using playground, we get the following result:

2

6

5

Nested Types

Nested types for class, structure and enumeration instances can also be extended with the
help of extensions.

extension Int {

 enum calc

 {

 case add

 case sub

 case mult

 case div

 case anything

 }

 var print: calc {

 switch self

 {

 case 0:

 return .add

 case 1:

 return .sub

 case 2:

 return .mult

 case 3:

 return .div

 default:

 return .anything

 }

Swift 4

191

 }

}

func result(numb: [Int]) {

 for i in numb {

 switch i.print {

 case .add:

 print(" 10 ")

 case .sub:

 print(" 20 ")

 case .mult:

 print(" 30 ")

 case .div:

 print(" 40 ")

 default:

 print(" 50 ")

 }

 }

}

result([0, 1, 2, 3, 4, 7])

When we run the above program using playground, we get the following result:

10

20

30

40

50

50

Swift 4

192

Protocols provide a blueprint for Methods, properties and other requirements functionality.

It is just described as a methods or properties skeleton instead of implementation.

Methods and properties implementation can further be done by defining classes, functions

and enumerations. Conformance of a protocol is defined as the methods or properties
satisfying the requirements of the protocol.

Syntax

Protocols also follow the similar syntax as that of classes, structures, and enumerations:

protocol SomeProtocol {

 // protocol definition

}

Protocols are declared after the class, structure or enumeration type names. Single and

Multiple protocol declarations are also possible. If multiple protocols are defined they have
to be separated by commas.

struct SomeStructure: Protocol1, Protocol2 {

 // structure definition

}

When a protocol has to be defined for super class, the protocol name should follow the
super class name with a comma.

class SomeClass: SomeSuperclass, Protocol1, Protocol2 {

 // class definition

}

Property and Method Requirements

Protocol is used to specify particular class type property or instance property. It just

specifies the type or instance property alone rather than specifying whether it is a stored

or computed property. Also, it is used to specify whether the property is 'gettable' or
'settable'.

Property requirements are declared by 'var' keyword as property variables. {get set} is

used to declare gettable and settable properties after their type declaration. Gettable is

mentioned by {get} property after their type declaration.

protocol classa {

 var marks: Int { get set }

 var result: Bool { get }

33. Swift 4 – Protocols

Swift 4

193

 func attendance() -> String

 func markssecured() -> String

}

protocol classb: classa {

 var present: Bool { get set }

 var subject: String { get set }

 var stname: String { get set }

}

class classc: classb {

 var marks = 96

 let result = true

 var present = false

 var subject = "Swift 4 Protocols"

 var stname = "Protocols"

 func attendance() -> String {

 return "The \(stname) has secured 99% attendance"

 }

 func markssecured() -> String {

 return "\(stname) has scored \(marks)"

 }

}

let studdet = classc()

studdet.stname = "Swift 4"

studdet.marks = 98

studdet.markssecured()

print(studdet.marks)

print(studdet.result)

Swift 4

194

print(studdet.present)

print(studdet.subject)

print(studdet.stname)

When we run the above program using playground, we get the following result:

98

true

false

Swift 4 Protocols

Swift 4

Mutating Method Requirements

protocol daysofaweek {

 mutating func print()

}

enum days: daysofaweek {

 case sun, mon, tue, wed, thurs, fri, sat

 mutating func print() {

 switch self {

 case sun:

 self = sun

 print("Sunday")

 case mon:

 self = mon

 print("Monday")

 case tue:

 self = tue

 print("Tuesday")

 case wed:

 self = wed

 print("Wednesday")

 case mon:

 self = thurs

 print("Thursday")

 case tue:

Swift 4

195

 self = fri

 print("Friday")

 case sat:

 self = sat

 print("Saturday")

 default:

 print("NO Such Day")

 }

 }

}

var res = days.wed

res.print()

When we run the above program using playground, we get the following result:

Wednesday

Initializer Requirements

Swing allows the user to initialize protocols to follow type conformance similar to that of
normal initializers.

Syntax

protocol SomeProtocol {

 init(someParameter: Int)

}

For example

protocol tcpprotocol {

 init(aprot: Int)

}

Swift 4

196

Class Implementations of Protocol Initializer Requirements

Designated or convenience initializer allows the user to initialize a protocol to conform its

standard by the reserved 'required' keyword.

class SomeClass: SomeProtocol {

 required init(someParameter: Int) {

 // initializer implementation statements

 }

}

protocol tcpprotocol {

 init(aprot: Int)

}

class tcpClass: tcpprotocol {

 required init(aprot: Int) {

 }

}

Protocol conformance is ensured on all subclasses for explicit or inherited implementation
by 'required' modifier.

When a subclass overrides its super class initialization requirement it is specified by the

'override' modifier keyword.

protocol tcpprotocol {

 init(no1: Int)

}

class mainClass {

 var no1: Int // local storage

 init(no1: Int) {

 self.no1 = no1 // initialization

 }

}

class subClass: mainClass, tcpprotocol {

 var no2: Int

 init(no1: Int, no2 : Int) {

 self.no2 = no2

Swift 4

197

 super.init(no1:no1)

 }

 // Requires only one parameter for convenient method

 required override convenience init(no1: Int) {

 self.init(no1:no1, no2:0)

 }

}

let res = mainClass(no1: 20)

let print = subClass(no1: 30, no2: 50)

print("res is: \(res.no1)")

print("res is: \(print.no1)")

print("res is: \(print.no2)")

When we run the above program using playground, we get the following result:

res is: 20

res is: 30

res is: 50

Protocols as Types

Instead of implementing functionalities in a protocol they are used as types for functions,

classes, methods etc.

Protocols can be accessed as types in:

 Function, method or initialize as a parameter or return type

 Constant, variable or property

 Arrays, dictionaries or other containers as items

protocol Generator {

 typealias members

 func next() -> members?

}

var items = [10,20,30].generate()

while let x = items.next() {

 print(x)

}

Swift 4

198

for lists in map([1,2,3], {i in i*5}) {

 print(lists)

}

print([100,200,300])

print(map([1,2,3], {i in i*10}))

When we run the above program using playground, we get the following result:

10

20

30

5

10

15

[100, 200, 300]

[10, 20, 30]

Adding Protocol Conformance with an Extension

Existing type can be adopted and conformed to a new protocol by making use of

extensions. New properties, methods and subscripts can be added to existing types with
the help of extensions.

protocol AgeClasificationProtocol {

 var age: Int { get }

 func agetype() -> String

}

class Person {

 let firstname: String

 let lastname: String

 var age: Int

 init(firstname: String, lastname: String) {

 self.firstname = firstname

 self.lastname = lastname

 self.age = 10

 }

}

Swift 4

199

extension Person : AgeClasificationProtocol {

 func fullname() -> String {

 var c: String

 c = firstname + " " + lastname

 return c

 }

 func agetype() -> String {

 switch age {

 case 0...2:

 return "Baby"

 case 2...12:

 return "Child"

 case 13...19:

 return "Teenager"

 case let x where x > 65:

 return "Elderly"

 default:

 return "Normal"

 }

 }

}

Protocol Inheritance

Swift 4 allows protocols to inherit properties from its defined properties. It is similar to

that of class inheritance, but with the choice of listing multiple inherited protocols

separated by commas.

protocol classa {

 var no1: Int { get set }

 func calc(sum: Int)

}

protocol result {

 func print(target: classa)

}

Swift 4

200

class student2: result {

 func print(target: classa) {

 target.calc(1)

 }

}

class classb: result {

 func print(target: classa) {

 target.calc(5)

 }

}

class student: classa {

 var no1: Int = 10

 func calc(sum: Int) {

 no1 -= sum

 print("Student attempted \(sum) times to pass")

 if no1 <= 0 {

 print("Student is absent for exam")

 }

 }

}

class Player {

 var stmark: result!

 init(stmark: result) {

 self.stmark = stmark

 }

 func print(target: classa) {

 stmark.print(target)

 }

}

Swift 4

201

var marks = Player(stmark: student2())

var marksec = student()

marks.print(marksec)

marks.print(marksec)

marks.print(marksec)

marks.stmark = classb()

marks.print(marksec)

marks.print(marksec)

marks.print(marksec)

When we run the above program using playground, we get the following result:

Student attempted 1 times to pass

Student attempted 1 times to pass

Student attempted 1 times to pass

Student attempted 5 times to pass

Student attempted 5 times to pass

Student is absent for exam

Student attempted 5 times to pass

Student is absent for exam

Class Only Protocols

When protocols are defined and the user wants to define protocol with classes it should be

added by defining class first followed by protocol's inheritance list.

protocol tcpprotocol {

 init(no1: Int)

}

class mainClass {

 var no1: Int // local storage

 init(no1: Int) {

 self.no1 = no1 // initialization

 }

}

class subClass: mainClass, tcpprotocol {

 var no2: Int

Swift 4

202

 init(no1: Int, no2 : Int) {

 self.no2 = no2

 super.init(no1:no1)

 }

 // Requires only one parameter for convenient method

 required override convenience init(no1: Int) {

 self.init(no1:no1, no2:0)

 }

}

let res = mainClass(no1: 20)

let print = subClass(no1: 30, no2: 50)

print("res is: \(res.no1)")

print("res is: \(print.no1)")

print("res is: \(print.no2)")

When we run the above program using playground, we get the following result:

res is: 20

res is: 30

res is: 50

Protocol Composition

Swift 4 allows multiple protocols to be called at once with the help of protocol composition.

Syntax

protocol<SomeProtocol, AnotherProtocol>

Example

protocol stname {

 var name: String { get }

}

protocol stage {

 var age: Int { get }

}

Swift 4

203

struct Person: stname, stage {

 var name: String

 var age: Int

}

func print(celebrator: protocol<stname, stage>) {

 print("\(celebrator.name) is \(celebrator.age) years old")

}

let studname = Person(name: "Priya", age: 21)

print(studname)

let stud = Person(name: "Rehan", age: 29)

print(stud)

let student = Person(name: "Roshan", age: 19)

print(student)

When we run the above program using playground, we get the following result:

Priya is 21 years old

Rehan is 29 years old

Roshan is 19 years old

Checking for Protocol Conformance

Protocol conformance is tested by 'is' and 'as' operators similar to that of type casting.

 The is operator returns true if an instance conforms to protocol standard and

returns false if it fails.

 The as? version of the downcast operator returns an optional value of the

protocol's type, and this value is nil if the instance does not conform to that

protocol.

 The as version of the downcast operator forces the downcast to the protocol type

and triggers a runtime error if the downcast does not succeed.

import Foundation

@objc protocol rectangle {

Swift 4

204

 var area: Double { get }

}

@objc class Circle: rectangle {

 let pi = 3.1415927

 var radius: Double

 var area: Double { return pi * radius * radius }

 init(radius: Double) { self.radius = radius }

}

@objc class result: rectangle {

 var area: Double

 init(area: Double) { self.area = area }

}

class sides {

 var rectsides: Int

 init(rectsides: Int) { self.rectsides = rectsides }

}

let objects: [AnyObject] = [Circle(radius: 2.0),result(area:
198),sides(rectsides: 4)]

for object in objects {

 if let objectWithArea = object as? rectangle {

 print("Area is \(objectWithArea.area)")

 } else {

 print("Rectangle area is not defined")

 }

}

When we run the above program using playground, we get the following result:

Area is 12.5663708

Area is 198.0

Rectangle area is not defined

Swift 4

205

Swift 4 language provides 'Generic' features to write flexible and reusable functions and

types. Generics are used to avoid duplication and to provide abstraction. Swift 4 standard

libraries are built with generics code. Swift 4s 'Arrays' and 'Dictionary' types belong to

generic collections. With the help of arrays and dictionaries the arrays are defined to hold
'Int' values and 'String' values or any other types.

func exchange(inout a: Int, inout b: Int) {

 let temp = a

 a = b

 b = temp

}

var numb1 = 100

var numb2 = 200

print("Before Swapping values are: \(numb1) and \(numb2)")

exchange(&numb1, &numb2)

print("After Swapping values are: \(numb1) and \(numb2)")

When we run the above program using playground, we get the following result:

Before Swapping values are: 100 and 200

After Swapping values are: 200 and 100

Generic Functions: Type Parameters

Generic functions can be used to access any data type like 'Int' or 'String'.

func exchange<T>(inout a: T, inout b: T) {

 let temp = a

 a = b

 b = temp

}

var numb1 = 100

var numb2 = 200

print("Before Swapping Int values are: \(numb1) and \(numb2)")

34. Swift 4 – Generics

Swift 4

206

exchange(&numb1, &numb2)

print("After Swapping Int values are: \(numb1) and \(numb2)")

var str1 = "Generics"

var str2 = "Functions"

print("Before Swapping String values are: \(str1) and \(str2)")

exchange(&str1, &str2)

print("After Swapping String values are: \(str1) and \(str2)")

When we run the above program using playground, we get the following result:

Before Swapping Int values are: 100 and 200

After Swapping Int values are: 200 and 100

Before Swapping String values are: Generics and Functions

After Swapping String values are: Functions and Generics

The function exchange() is used to swap values which is described in the above program

and <T> is used as a type parameter. For the first time, function exchange() is called to

return 'Int' values and second call to the function exchange() will return 'String' values.
Multiple parameter types can be included inside the angle brackets separated by commas.

Type parameters are named as user defined to know the purpose of the type parameter

that it holds. Swift 4 provides <T> as generic type parameter name. However type

parameters like Arrays and Dictionaries can also be named as key, value to identify that
they belong to type 'Dictionary'.

Generic Types

struct TOS<T> {

 var items = [T]()

 mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

}

var tos = TOS<String>()

tos.push("Swift 4")

print(tos.items)

Swift 4

207

tos.push("Generics")

print(tos.items)

tos.push("Type Parameters")

print(tos.items)

tos.push("Naming Type Parameters")

print(tos.items)

let deletetos = tos.pop()

When we run the above program using playground, we get the following result:

[Swift 4]

[Swift 4, Generics]

[Swift 4, Generics, Type Parameters]

[Swift 4, Generics, Type Parameters, Naming Type Parameters]

Extending a Generic Type

Extending the stack property to know the top of the item is included with 'extension'

keyword.

struct TOS<T> {

 var items = [T]()

 mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

}

var tos = TOS<String>()

tos.push("Swift 4")

print(tos.items)

Swift 4

208

tos.push("Generics")

print(tos.items)

tos.push("Type Parameters")

print(tos.items)

tos.push("Naming Type Parameters")

print(tos.items)

extension TOS {

 var first: T? {

 return items.isEmpty ? nil : items[items.count - 1]

 }

}

if let first = tos.first {

 print("The top item on the stack is \(first).")

}

When we run the above program using playground, we get the following result:

[Swift 4]

[Swift 4, Generics]

[Swift 4, Generics, Type Parameters]

[Swift 4, Generics, Type Parameters, Naming Type Parameters]

The top item on the stack is Naming Type Parameters.

Type Constraints

Swift 4 language allows 'type constraints' to specify whether the type parameter inherits
from a specific class, or to ensure protocol conformance standard.

func exchange<T>(inout a: T, inout b: T) {

 let temp = a

 a = b

 b = temp

}

var numb1 = 100

Swift 4

209

var numb2 = 200

print("Before Swapping Int values are: \(numb1) and \(numb2)")

exchange(&numb1, &numb2)

print("After Swapping Int values are: \(numb1) and \(numb2)")

var str1 = "Generics"

var str2 = "Functions"

print("Before Swapping String values are: \(str1) and \(str2)")

exchange(&str1, &str2)

print("After Swapping String values are: \(str1) and \(str2)")

When we run the above program using playground, we get the following result:

Before Swapping Int values are: 100 and 200

After Swapping Int values are: 200 and 100

Before Swapping String values are: Generics and Functions

After Swapping String values are: Functions and Generics

Associated Types

Swift 4 allows associated types to be declared inside the protocol definition by the keyword
'typealias'.

protocol Container {

 typealias ItemType

 mutating func append(item: ItemType)

 var count: Int { get }

 subscript(i: Int) -> ItemType { get }

}

struct TOS<T>: Container {

 // original Stack<T> implementation

 var items = [T]()

 mutating func push(item: T) {

 items.append(item)

 }

Swift 4

210

 mutating func pop() -> T {

 return items.removeLast()

 }

 // conformance to the Container protocol

 mutating func append(item: T) {

 self.push(item)

 }

 var count: Int {

 return items.count

 }

 subscript(i: Int) -> T {

 return items[i]

 }

}

var tos = TOS<String>()

tos.push("Swift 4")

print(tos.items)

tos.push("Generics")

print(tos.items)

tos.push("Type Parameters")

print(tos.items)

tos.push("Naming Type Parameters")

print(tos.items)

When we run the above program using playground, we get the following result:

[Swift 4]

[Swift 4, Generics]

[Swift 4, Generics, Type Parameters]

[Swift 4, Generics, Type Parameters, Naming Type Parameters]

Swift 4

211

Where Clauses

Type constraints enable the user to define requirements on the type parameters associated

with a generic function or type. For defining requirements for associated types 'where'

clauses are declared as part of type parameter list. 'where' keyword is placed immediately

after the list of type parameters followed by constraints of associated types, equality

relationships between types and associated types.

protocol Container {

 typealias ItemType

 mutating func append(item: ItemType)

 var count: Int { get }

 subscript(i: Int) -> ItemType { get }

}

struct Stack<T>: Container {

 // original Stack<T> implementation

 var items = [T]()

 mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

 // conformance to the Container protocol

 mutating func append(item: T) {

 self.push(item)

 }

 var count: Int {

 return items.count

 }

 subscript(i: Int) -> T {

 return items[i]

 }

}

func allItemsMatch<

 C1: Container, C2: Container

 where C1.ItemType == C2.ItemType, C1.ItemType: Equatable>

Swift 4

212

 (someContainer: C1, anotherContainer: C2) -> Bool {

 // check that both containers contain the same number of items

 if someContainer.count != anotherContainer.count {

 return false

}

// check each pair of items to see if they are equivalent

for i in 0..<someContainer.count {

 if someContainer[i] != anotherContainer[i] {

 return false

 }

}

 // all items match, so return true

 return true

}

var tos = Stack<String>()

tos.push("Swift 4")

print(tos.items)

tos.push("Generics")

print(tos.items)

tos.push("Where Clause")

print(tos.items)

var eos = ["Swift 4", "Generics", "Where Clause"]

print(eos)

When we run the above program using playground, we get the following result:

[Swift 4]

[Swift 4, Generics]

[Swift 4, Generics, Where Clause]

[Swift 4, Generics, Where Clause]

Swift 4

213

To restrict access to code blocks, modules and abstraction is done through access control.

Classes, structures and enumerations can be accessed according to their properties,

methods, initializers and subscripts by access control mechanisms. Constants, variables

and functions in a protocol are restricted and allowed access as global and local through

access control. Access control applied to properties, types and functions can be referred
as 'entities'.

Access control model is based on modules and source files.

Module is defined as a single unit of code distribution and can be imported using the

keyword 'import'. A source file is defined as a single source code file with in a module to
access multiple types and functions.

Three different access levels are provided by Swift 4 language. They are Public, Internal
and Private access.

Access
Levels

Definition

Public
Enables entities to be processed with in any source file from their defining
module, a source file from another module that imports the defining module.

Internal
Enables entities to be used within any source file from their defining module,
but not in any source file outside of that module.

Private
Restricts the use of an entity to its own defining source file. Private access

plays role to hide the implementation details of a specific code functionality.

Syntax

public class SomePublicClass {}

internal class SomeInternalClass {}

private class SomePrivateClass {}

public var somePublicVariable = 0

internal let someInternalConstant = 0

private func somePrivateFunction() {}

Access Control for Function types

Some functions may have arguments declared inside the function without any return

values. The following program declares a and b as arguments to the sum() function. Inside

the function itself the values for arguments a and b are passed by invoking the function

call sum() and its values are printed thereby eliminating return values. To make the

function's return type as private, declare the function's overall access level with the private
modifier.

35. Swift 4 – Access Control

Swift 4

214

private func sum(a: Int, b: Int) {

 let a = a + b

 let b = a - b

 print(a, b)

}

sum(20, 10)

sum(40,10)

sum(24,6)

When we run the above program using playground, we get the following result:

(30, 20)

(50, 40)

(30, 24)

Access Control for Enumeration types

public enum Student{

 case Name(String)

 case Mark(Int,Int,Int)

}

var studDetails = Student.Name("Swift 4")

var studMarks = Student.Mark(98,97,95)

switch studMarks {

 case .Name(let studName):

 print("Student name is: \(studName).")

 case .Mark(let Mark1, let Mark2, let Mark3):

 print("Student Marks are: \(Mark1),\(Mark2),\(Mark3).")

 default:

 print("Nothing")

}

When we run the above program using playground, we get the following result:

Student Marks are: 98,97,95

Enumeration in Swift 4 language automatically receive the same access level for individual

cases of an enumeration. Consider for example to access the students name and marks

secured in three subjects enumeration name is declared as student and the members

present in enum class are name which belongs to string datatype, marks are represented

Swift 4

215

as mark1, mark2 and mark3 of datatype Integer. To access either the student name or

marks they have scored. Now, the switch case will print student name if that case block is

executed otherwise it will print the marks secured by the student. If both condition fails
the default block will be executed.

Access Control for SubClasses

Swift 4 allows the user to subclass any class that can be accessed in the current access

context. A subclass cannot have a higher access level than its superclass. The user is
restricted from writing a public subclass of an internal superclass.

public class cricket {

 private func print() {

 print("Welcome to Swift 4 Super Class")

 }

}

internal class tennis: cricket {

 override internal func print() {

 print("Welcome to Swift 4 Sub Class")

 }

}

let cricinstance = cricket()

cricinstance.print()

let tennisinstance = tennis()

tennisinstance.print()

When we run the above program using playground, we get the following result:

Welcome to Swift 4 Super Class

Welcome to Swift 4 Sub Class

Access Control for Constants, variables, properties and subscripts

Swift 4 constant, variable, or property cannot be defined as public than its type. It is not

valid to write a public property with a private type. Similarly, a subscript cannot be more
public than its index or return type.

When a constant, variable, property, or subscript makes use of a private type, the
constant, variable, property, or subscript must also be marked as private:

private var privateInstance = SomePrivateClass()

Swift 4

216

Getters and Setters

Getters and setters for constants, variables, properties, and subscripts automatically

receive the same access level as the constant, variable, property, or subscript they belong
to.

class Samplepgm {

 private var counter: Int = 0{

 willSet(newTotal){

 print("Total Counter is: \(newTotal)")

 }

 didSet{

 if counter > oldValue {

 print("Newly Added Counter \(counter - oldValue)")

 }

 }

 }

}

let NewCounter = Samplepgm()

NewCounter.counter = 100

NewCounter.counter = 800

When we run the above program using playground, we get the following result:

Total Counter is: 100

Newly Added Counter 100

Total Counter is: 800

Newly Added Counter 700

Access Control for Initializers and Default Initializers

Custom initializers can be assigned an access level less than or equal to the type that they

initialize. A required initializer must have the same access level as the class it belongs to.

The types of an initializer's parameters cannot be more private than the initializer's own
access level.

To declare each and every subclass of the initialize 'required' keyword needs to be defined
before the init() function.

class classA {

Swift 4

217

 required init() {

 var a = 10

 print(a)

 }

}

class classB: classA {

 required init() {

 var b = 30

 print(b)

 }

}

let res = classA()

let print = classB()

When we run the above program using playground, we get the following result:

10

30

10

A default initializer has the same access level as the type it initializes, unless that type is

defined as public. When default initialize is defined as public it is considered internal. When

the user needs a public type to be initializable with a no-argument initializer in another
module, provide explicitly a public no-argument initializer as part of the type's definition.

Access Control for Protocols

When we define a new protocol to inherit functionalities from an existing protocol, both

has to be declared the same access levels to inherit the properties of each other. Swift 4

access control won’t allow the users to define a 'public' protocol that inherits from an
'internal' protocol.

public protocol tcpprotocol {

 init(no1: Int)

}

public class mainClass {

 var no1: Int // local storage

 init(no1: Int) {

 self.no1 = no1 // initialization

Swift 4

218

 }

}

class subClass: mainClass, tcpprotocol {

 var no2: Int

 init(no1: Int, no2 : Int) {

 self.no2 = no2

 super.init(no1:no1)

 }

 // Requires only one parameter for convenient method

 required override convenience init(no1: Int) {

 self.init(no1:no1, no2:0)

 }

}

let res = mainClass(no1: 20)

let print = subClass(no1: 30, no2: 50)

print("res is: \(res.no1)")

print("res is: \(print.no1)")

print("res is: \(print.no2)")

When we run the above program using playground, we get the following result:

res is: 20

res is: 30

res is: 50

Access Control for Extensions

Swift 4 does not allow the users to provide an explicit access level modifier for an extension

when the user uses that extension to add protocol conformance. The default access level

for each protocol requirement implementation within the extension is provided with its
own protocol access level.

Access Control for Generics

Generics allow the user to specify minimum access levels to access the type constraints
on its type parameters.

Swift 4

219

public struct TOS<T> {

 var items = [T]()

 private mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

}

var tos = TOS<String>()

tos.push("Swift 4")

print(tos.items)

tos.push("Generics")

print(tos.items)

tos.push("Type Parameters")

print(tos.items)

tos.push("Naming Type Parameters")

print(tos.items)

let deletetos = tos.pop()

When we run the above program using playground, we get the following result:

[Swift 4]

[Swift 4, Generics]

[Swift 4, Generics, Type Parameters]

[Swift 4, Generics, Type Parameters, Naming Type Parameters]

Access Control for Type Aliases

The user can define type aliases to treat distinct access control types. Same access level

or different access levels can be defined by the user. When type alias is 'private' its

Swift 4

220

associated members can be declared as 'private, internal of public type'. When type alias
is public the members cannot be alias as an 'internal' or 'private' name

Any type aliases you define are treated as distinct types for the purposes of access control.

A type alias can have an access level less than or equal to the access level of the type it

aliases. For example, a private type alias can alias a private, internal, or public type, but

a public type alias cannot alias an internal or private type.

public protocol Container {

 typealias ItemType

 mutating func append(item: ItemType)

 var count: Int { get }

 subscript(i: Int) -> ItemType { get }

}

struct Stack<T>: Container {

 // original Stack<T> implementation

 var items = [T]()

 mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

 // conformance to the Container protocol

 mutating func append(item: T) {

 self.push(item)

 }

 var count: Int {

 return items.count

 }

 subscript(i: Int) -> T {

 return items[i]

 }

}

Swift 4

221

func allItemsMatch<

 C1: Container, C2: Container

 where C1.ItemType == C2.ItemType, C1.ItemType: Equatable>

 (someContainer: C1, anotherContainer: C2) -> Bool {

 // check that both containers contain the same number of items

 if someContainer.count != anotherContainer.count {

 return false

 }

 // check each pair of items to see if they are equivalent

 for i in 0..<someContainer.count {

 if someContainer[i] != anotherContainer[i] {

 return false

 }

 }

 // all items match, so return true

 return true

}

var tos = Stack<String>()

tos.push("Swift 4")

print(tos.items)

tos.push("Generics")

print(tos.items)

tos.push("Where Clause")

print(tos.items)

var eos = ["Swift 4", "Generics", "Where Clause"]

print(eos)

When we run the above program using playground, we get the following result:

[Swift 4]

Swift 4

222

[Swift 4, Generics]

[Swift 4, Generics, Where Clause]

[Swift 4, Generics, Where Clause]

Swift Encoding and Decoding

Swift 4 introduces a new Codable Protocol, that let’s you serialize and De-serialize custom

data types without writing any special code – and without having to worry about losing
your value types.

struct Language: Codable {

var name: String

var version: Int

}

let swift = Language(name: "Swift", version: 4)

let java = Language(name: "java", version: 8)

let R = Language(name: "R", version: 3

Notice that Langauage is conforming to Codable Protocol. Now we’ll convert it to a Json

Data Representation using one simple line.

let encoder = JSONEncoder()

if let encoded = try? encoder.encode(java)

{

//Perform some operations on this value.

}

Swift will automatically encode all the values inside your data type.

You can decode the data using Decoder function like

let decoder = JSONDecoder()

if let decoded = try? decoder.decode(Language.self, from: encoded)

{

//Perform some operations on this value.

}

Both JSONEncoder and its property list counterpart PropertyListEncoder have lots of
options for customizing how they work.

